ترغب بنشر مسار تعليمي؟ اضغط هنا

Time-Frequency Analysis of Gravitational Wave Data

121   0   0.0 ( 0 )
 نشر من قبل Neil J. Cornish
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Neil J. Cornish




اسأل ChatGPT حول البحث

Data from gravitational wave detectors are recorded as time series that include contributions from myriad noise sources in addition to any gravitational wave signals. When regularly sampled data are available, such as for ground based and future space based interferometers, analyses are typically performed in the frequency domain, where stationary (time invariant) noise processes can be modeled very efficiently. In reality, detector noise is not stationary due to a combination of short duration noise transients and longer duration drifts in the power spectrum. This non-stationarity produces correlations across samples at different frequencies, obviating the main advantage of a frequency domain analysis. Here an alternative time-frequency approach to gravitational wave data analysis is proposed that uses discrete, orthogonal wavelet wavepackets. The time domain data is mapped onto a uniform grid of time-frequency pixels. For locally stationary noise - that is, noise with an adiabatically varying spectrum - the time-frequency pixels are uncorrelated, which greatly simplifies the calculation of quantities such as the likelihood. Moreover, the gravitational wave signals from binary systems can be compactly represented as a collection of lines in time-frequency space, resulting in a computational cost for computing waveforms and likelihoods that scales as the square root of the number of time samples, as opposed to the linear scaling for time or frequency based analyses. Key to this approach is having fast methods for computing binary signals directly in the wavelet domain. Multiple fast transform methods are developed in detail.



قيم البحث

اقرأ أيضاً

Gravitational waves are radiative solutions of space-time dynamics predicted by Einsteins theory of General Relativity. A world-wide array of large-scale and highly sensitive interferometric detectors constantly scrutinizes the geometry of the local space-time with the hope to detect deviations that would signal an impinging gravitational wave from a remote astrophysical source. Finding the rare and weak signature of gravitational waves buried in non-stationary and non-Gaussian instrument noise is a particularly challenging problem. We will give an overview of the data-analysis techniques and associated observational results obtained so far by Virgo (in Europe) and LIGO (in the US), along with the prospects offered by the up-coming advance
Searches for continuous gravitational waves from unknown sources attempt to detect long-lasting gravitational radiation by identifying Doppler-modulated signatures in the data. Semicoherent methods allow for wide parameter space surveys, identifying interesting regions to be followed up using more sensitive (and computationally expensive) tools. Thus, it is required to properly understand the parameter space structure under study, as failing to do so could significantly affect the effectiveness of said strategies. We introduce a new measure for distances in parameter space suited for semicoherent continuous wave searches. This novel approach, based on comparing time-frequency tracks, can be applied to any kind of quasi-monochromatic continuous wave signals and adapts itself to the underlying structure of the parameter space under study. In a first application to the post-processing stage of an all-sky search for continuous waves from neutron stars in binary systems, we demonstrate a search sensitivity improvement by solely replacing previous ad hoc distance measures in the candidate clustering procedure by the new proposal.
This work describes the operation of a High Frequency Gravitational Wave detector based on a cryogenic Bulk Acoustic Wave (BAW) cavity and reports observation of rare events during 153 days of operation over two seperate experimental runs (Run 1 and Run 2). In both Run 1 and Run 2 two modes were simultaneously monitored. Across both runs, the 3rd overtone of the fast shear mode (3B) operating at 5.506 MHz was monitored, while in Run 1 the second mode was chosen to be the 5th OT of the slow shear mode (5C) operating at 8.392 MHz. However, in Run 2 the second mode was selected to be closer in frequency to the first mode, and chosen to be the 3rd overtone of the slow shear mode (3C) operating at 4.993 MHz. Two strong events were observed as transients responding to energy deposition within acoustic modes of the cavity. The first event occurred during Run 1 on the 12/05/2019 (UTC), and was observed in the 5.506 MHz mode, while the second mode at 8.392 MHz observed no event. During Run 2, a second event occurred on the 27/11/2019(UTC) and was observed by both modes. Timing of the events were checked against available environmental observations as well as data from other detectors. Various possibilities explaining the origins of the events are discussed.
Gravitational wave astronomy relies on the use of multiple detectors, so that coincident detections may distinguish real signals from instrumental artifacts, and also so that relative timing of signals can provide the sky position of sources. We show that the comparison of instantaneous time-frequency and time- amplitude maps provided by the Hilbert-Huang Transform (HHT) can be used effectively for relative signal timing of common signals, to discriminate between the case of identical coincident signals and random noise coincidences, and to provide a classification of signals based on their time-frequency trajectories. The comparison is done with a chi-square goodness-of-fit method which includes contributions from both the instantaneous amplitude and frequency components of the HHT to match two signals in the time domain. This approach naturally allows the analysis of waveforms with strong frequency modulation.
Space-based gravitational wave detectors cannot keep rigid structures and precise arm length equality, so the precise equality of detector arms which is required in a ground-based interferometer to cancel the overwhelming laser noise is impossible. T he time-delay interferometry method is applied to unequal arm lengths to cancel the laser frequency noise. We give analytical formulas of the averaged response functions for tensor, vector, breathing and longitudinal polarizations in different TDI combinations, and obtain their asymptotic behaviors. At low frequencies, $fll f_*$, the averaged response functions of all TDI combinations increase as $f^2$ for all six polarizations. The one exception is the averaged response functions of $zeta$ for all six polarizations increase as $f^4$ in the equilateral-triangle case. At high frequencies, $fgg f_*$, the averaged response functions of all TDI combinations for the tensor and breathing modes fall off as $1/f^2$, the averaged response functions of all TDI combinations for the vector mode fall off as $ln(f)/f^2$ , and the averaged response functions of all TDI combinations for the longitudinal mode fall as $1/f$. We also give LISA and TianQin sensitivity curves in different TDI combinations for tensor, vector, breathing and longitudinal polarizations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا