ﻻ يوجد ملخص باللغة العربية
The emergent area of gravitational wave astronomy promises to provide revolutionary discoveries in the areas of astrophysics, cosmology, and fundamental physics. One of the most exciting possibilities is to use gravitational-wave observations to test alternative theories of gravity. In this contribution we describe how to use observations of extreme-mass-ratio inspirals by the future Laser Interferometer Space Antenna to test a particular class of theories: Chern-Simons modified gravity.
The direct detection of gravitational waves now provides a new channel of testing gravity theories. Despite that the parametrized post-Einsteinian framework is a powerful tool to quantitatively investigate effects of modification of gravity theory, t
Extreme-Mass-Ratio Inspirals (EMRIs) are one of the most promising sources of gravitational waves (GWs) for space-based detectors like the Laser Interferometer Space Antenna (LISA). EMRIs consist of a compact stellar object orbiting around a massive
We perform a phase space analysis of a generalized modified gravity theory with nonminimally coupling between geometry and matter. We apply the dynamical system approach to this generalized model and find that in the cosmological context, different c
Studies of dark energy at advanced gravitational-wave (GW) interferometers normally focus on the dark energy equation of state $w_{rm DE}(z)$. However, modified gravity theories that predict a non-trivial dark energy equation of state generically als
Waveform templates are a powerful tool for extracting and characterizing gravitational wave signals, acting as highly restrictive priors on the signal morphologies that allow us to extract weak events buried deep in the instrumental noise. The templa