ﻻ يوجد ملخص باللغة العربية
Woodall proved that for a graph $G$ of order $ngeq 2k+3$ where $kgeq 0$ is an integer, if $e(G)geq binom{n-k-1}{2}+binom{k+2}{2}+1$ then $G$ contains a $C_{ell}$ for each $ellin [3,n-k]$. In this article, we prove a stability result of this theorem. As a byproduct, we give complete solutions to two problems in cite{GN19}. Our second part is devoted to an open problem by Nikiforov: what is the maximum $C$ such that for all positive $varepsilon<C$ and sufficiently large $n$, every graph $G$ of order $n$ with spectral radius $rho(G)>sqrt{lfloorfrac{n^2}{4}rfloor}$ contains a cycle of length $ell$ for every $ellleq (C-varepsilon)n$. We prove that $Cgeqfrac{1}{4}$ by a method different from previous ones, improving the existing bounds. We also derive an ErdH{o}s-Gallai type edge number condition for even cycles, which may be of independent interest.
It is well known that spectral Tur{a}n type problem is one of the most classical {problems} in graph theory. In this paper, we consider the spectral Tur{a}n type problem. Let $G$ be a graph and let $mathcal{G}$ be a set of graphs, we say $G$ is texti
Let $L$ be subset of ${3,4,dots}$ and let $X_{n,M}^{(L)}$ be the number of cycles belonging to unicyclic components whose length is in $L$ in the random graph $G(n,M)$. We find the limiting distribution of $X_{n,M}^{(L)}$ in the subcritical regime $M
In their study of the densest jammed configurations for theater models, Krapivsky and Luck observe that two classes of permutations have the same cardinalities and ask for a bijection between them. In this note we show that the Foata correspondence provides the desired bijection.
For a graph $G,$ we consider $D subset V(G)$ to be a porous exponential dominating set if $1le sum_{d in D}$ $left( frac{1}{2} right)^{text{dist}(d,v) -1}$ for every $v in V(G),$ where dist$(d,v)$ denotes the length of the smallest $dv$ path. Similar
Let tau(.) be the Ramanujan tau-function, and let k be a positive integer such that tau(n) is not 0 for n=1,...,[k/2]. (This is known to be true for k < 10^{23}, and, conjecturally, for all k.) Further, let s be a permutation of the set {1,...,k}. Th