ترغب بنشر مسار تعليمي؟ اضغط هنا

Cycles of given lengths in unicyclic components in sparse random graphs

202   0   0.0 ( 0 )
 نشر من قبل Juanjo Ru\\'e Perna
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $L$ be subset of ${3,4,dots}$ and let $X_{n,M}^{(L)}$ be the number of cycles belonging to unicyclic components whose length is in $L$ in the random graph $G(n,M)$. We find the limiting distribution of $X_{n,M}^{(L)}$ in the subcritical regime $M=cn$ with $c<1/2$ and the critical regime $M=frac{n}{2}left(1+mu n^{-1/3}right)$ with $mu=O(1)$. Depending on the regime and a condition involving the series $sum_{l in L} frac{z^l}{2l}$, we obtain in the limit either a Poisson or a normal distribution as $ntoinfty$.



قيم البحث

اقرأ أيضاً

113 - Hechao Liu 2021
Sombor index is a novel topological index introduced by Gutman, defined as $SO(G)=sumlimits_{uvin E(G)}sqrt{d_{u}^{2}+d_{v}^{2}}$, where $d_{u}$ denotes the degree of vertex $u$. Recently, Chen et al. [H. Chen, W. Li, J. Wang, Extremal values on the Sombor index of trees, MATCH Commun. Math. Comput. Chem. 87 (2022), in press] considered the Sombor indices of trees with given diameter. For the continue, we determine the maximum Sombor indices for unicyclic graphs with given diameter.
196 - R. Glebov , M. Krivelevich 2012
We prove that the number of Hamilton cycles in the random graph G(n,p) is n!p^n(1+o(1))^n a.a.s., provided that pgeq (ln n+ln ln n+omega(1))/n. Furthermore, we prove the hitting-time version of this statement, showing that in the random graph process , the edge that creates a graph of minimum degree 2 creates (ln n/e)^n(1+o(1))^n Hamilton cycles a.a.s.
Gutman and Wagner proposed the concept of matching energy (ME) and pointed out that the chemical applications of ME go back to the 1970s. Let $G$ be a simple graph of order $n$ and $mu_1,mu_2,ldots,mu_n$ be the roots of its matching polynomial. The m atching energy of $G$ is defined to be the sum of the absolute values of $mu_{i} (i=1,2,ldots,n)$. In this paper, we characterize the graphs with minimal matching energy among all unicyclic and bicyclic graphs with a given diameter $d$.
Given an $n$ vertex graph whose edges have colored from one of $r$ colors $C={c_1,c_2,ldots,c_r}$, we define the Hamilton cycle color profile $hcp(G)$ to be the set of vectors $(m_1,m_2,ldots,m_r)in [0,n]^r$ such that there exists a Hamilton cycle th at is the concatenation of $r$ paths $P_1,P_2,ldots,P_r$, where $P_i$ contains $m_i$ edges. We study $hcp(G_{n,p})$ when the edges are randomly colored. We discuss the profile close to the threshold for the existence of a Hamilton cycle and the threshold for when $hcp(G_{n,p})={(m_1,m_2,ldots,m_r)in [0,n]^r:m_1+m_2+cdots+m_r=n}$.
89 - Richard Montgomery 2021
We show that, in almost every $n$-vertex random directed graph process, a copy of every possible $n$-vertex oriented cycle will appear strictly before a directed Hamilton cycle does, except of course for the directed cycle itself. Furthermore, given an arbitrary $n$-vertex oriented cycle, we determine the sharp threshold for its appearance in the binomial random directed graph. These results confirm, in a strong form, a conjecture of Ferber and Long.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا