ﻻ يوجد ملخص باللغة العربية
Let tau(.) be the Ramanujan tau-function, and let k be a positive integer such that tau(n) is not 0 for n=1,...,[k/2]. (This is known to be true for k < 10^{23}, and, conjecturally, for all k.) Further, let s be a permutation of the set {1,...,k}. Then there exist infinitely many positive integers m such that |tau(m+s(1))|<tau(m+s(2))|<...<|tau(m+s(k))|. We also obtain a similar result for Fourier-coefficients of general newforms.
Let $1<g_1<ldots<g_{varphi(p-1)}<p-1$ be the ordered primitive roots modulo~$p$. We study the pseudorandomness of the binary sequence $(s_n)$ defined by $s_nequiv g_{n+1}+g_{n+2}bmod 2$, $n=0,1,ldots$. In particular, we study the balance, linear comp
Let $q:=e^{2 pi iz}$, where $z in mathbb{H}$. For an even integer $k$, let $f(z):=q^hprod_{m=1}^{infty}(1-q^m)^{c(m)}$ be a meromorphic modular form of weight $k$ on $Gamma_0(N)$. For a positive integer $m$, let $T_m$ be the $m$th Hecke operator and
We explore an algorithm which systematically finds all discrete eigenvalues of an analytic eigenvalue problem. The algorithm is more simple and elementary as could be expected before. It consists of Hejhals identity, linearisation, and Turing bounds.
Since the study by Jacobi and Hecke, Hecke-type series have received a lot of attention. Unlike such series associated with indefinite quadratic forms, identities on Hecke-type series associated with definite quadratic forms are quite rare in the lit
In this paper we study, both analytically and numerically, questions involving the distribution of eigenvalues of Maass forms on the moonshine groups $Gamma_0(N)^+$, where $N>1$ is a square-free integer. After we prove that $Gamma_0(N)^+$ has one cus