ﻻ يوجد ملخص باللغة العربية
We analyze the modulation characteristics of the uncooled terahertz (THz) and infrared (IR) detectors using the variation of the density and effective temperature of the two-dimensional electron-hole plasma in uniform graphene layers (GLs) and perforated graphene layers (PGLs) due to the absorption of THz and IR radiation. The performance of the photodetectors (both the GL-photoresistor and the PGL-based barrier photodiodes) are compared. Their characteristics are also compared with the GL reverse-biased photodiodes. The obtained results allow to evaluate the ultimate modulation frequencies of these photodetectors and can be used for their optimization.
We have studied the optical properties of two-dimensional (2D) Schottky photodiode heterojunctions made of chemical vapor deposited (CVD) graphene on n- and p-type Silicon (Si) substrates. Much better rectification behavior is observed from the diode
We study the operation of infrared photodetectors based on van der Waals heterostructures with the multiple graphene layers (GLs) and n-type emitter and collector contacts. The operation of such GL infrared photodetectors (GLIPs) is associated with t
We propose and evaluate the vertical cascade terahertz and infrared photodetectors based on multiple-graphene-layer (GL) structures with thin tunnel barrier layers (made of tungsten disulfide or related materials). The photodetector operation is asso
A stochastic nonlinear electrical characteristic of graphene is reported. Abrupt current changes are observed from voltage sweeps between the source and drain with an on/off ratio up to 10^(3). It is found that graphene channel experience the topolog
Graphene is an ideal material for hot-electron bolometers, due to its low heat capacity and weak electron-phonon coupling. Nanostructuring graphene with quantum dot constrictions yields detectors with extraordinarily high intrinsic responsivity, high