ﻻ يوجد ملخص باللغة العربية
We have studied the optical properties of two-dimensional (2D) Schottky photodiode heterojunctions made of chemical vapor deposited (CVD) graphene on n- and p-type Silicon (Si) substrates. Much better rectification behavior is observed from the diodes fabricated on n- Si substrates in comparison with the devices on p-Si substrates in dark condition. Also, graphene/n-Si photodiodes show a considerable responsivity of 270 mA/W within the silicon spectral range in DC reverse bias condition. The present results are furthermore compared with that of a molybdenum disulfide (MoS2)/p-type silicon photodiodes.
We analyze the modulation characteristics of the uncooled terahertz (THz) and infrared (IR) detectors using the variation of the density and effective temperature of the two-dimensional electron-hole plasma in uniform graphene layers (GLs) and perfor
Considering the difference of energy bands in graphene and silicene, we put forward a new model of the graphene-silicene-graphene (GSG) heterojunction. In the GSG, we study the valley polarization properties in a zigzag nanoribbon in the presence of
We propose and evaluate the vertical cascade terahertz and infrared photodetectors based on multiple-graphene-layer (GL) structures with thin tunnel barrier layers (made of tungsten disulfide or related materials). The photodetector operation is asso
Graphene is an ideal material for hot-electron bolometers, due to its low heat capacity and weak electron-phonon coupling. Nanostructuring graphene with quantum dot constrictions yields detectors with extraordinarily high intrinsic responsivity, high
We report vertically-illuminated, resonant cavity enhanced, graphene-Si Schottky photodetectors (PDs) operating at 1550nm. These exploit internal photoemission at the graphene-Si interface. To obtain spectral selectivity and enhance responsivity, the