ﻻ يوجد ملخص باللغة العربية
We determine the shape of all sum-free sets in ${1,dots,n}^2$ of size close to the maximum $frac{3}{5}n^2$, solving a problem of Elsholtz and Rackham. We show that all such asymptotic maximum sum-free sets lie completely in the stripe $frac{4}{5}n-o(n)le x+ylefrac{8}{5}n+ o(n)$. We also determine for any positive integer $p$ the maximum size of a subset $Asubseteq {1,dots,n}^2$ which forbids the triple $(x,y,z)$ satisfying $px+py=z$.
We count the ordered sum-free triplets of subsets in the group $mathbb{Z}/pmathbb{Z}$, i.e., the triplets $(A,B,C)$ of sets $A,B,C subset mathbb{Z}/pmathbb{Z}$ for which the equation $a+b=c$ has no solution with $ain A$, $b in B$ and $c in C$. Our ma
We show that, in contrast to the integers setting, almost all even order abelian groups $G$ have exponentially fewer maximal sum-free sets than $2^{mu(G)/2}$, where $mu(G)$ denotes the size of a largest sum-free set in $G$. This confirms a conjecture of Balogh, Liu, Sharifzadeh and Treglown.
A subset of vertices is a {it maximum independent set} if no two of the vertices are adjacent and the subset has maximum cardinality. A subset of vertices is called a {it maximum dissociation set} if it induces a subgraph with vertex degree at most 1
In this paper, we study product-free subsets of the free semigroup over a finite alphabet $A$. We prove that the maximum density of a product-free subset of the free semigroup over $A$, with respect to the natural measure that assigns a weight of $|A
A tri-colored sum-free set in an abelian group $H$ is a collection of ordered triples in $H^3$, ${(a_i,b_i,c_i)}_{i=1}^m$, such that the equation $a_i+b_j+c_k=0$ holds if and only if $i=j=k$. Using a variant of the lemma introduced by Croot, Lev, and