ترغب بنشر مسار تعليمي؟ اضغط هنا

Matched asymptotic expansion approach to pulse dynamics for a three-component reaction diffusion systems

60   0   0.0 ( 0 )
 نشر من قبل Hiromasa Suzuki
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the existence and stability of standing pulse solutions to a singularly perturbed three-component reaction diffusion system with one-activator and two-inhibitor type. We apply the MAE (matched asymptotic expansion) method to the construction of solutions and the SLEP (Singular Limit Eigenvalue Problem) method to their stability properties. This approach is not just an alternative approach to geometric singular perturbation and the associated Evans function, but gives us two advantages: one is the extendability to higher dimensional case, and the other is to allow us to obtain more precise information on the behaviors of critical eigenvalues. This implies the existence of codimension two singularity of drift and Hopf bifurcations for the standing pulse solution and it is numerically confirmed that stable standing and traveling breathers emerge around the singularity in a physically-acceptable regime.



قيم البحث

اقرأ أيضاً

89 - Katharina Hopf 2021
We establish weak-strong uniqueness and stability properties of renormalised solutions to a class of energy-reaction-diffusion systems, which genuinely feature cross-diffusion effects. The systems considered are motivated by thermodynamically consist ent models, and their formal entropy structure allows us to use as a key tool a suitably adjusted relative entropy method. Weak-strong uniqueness is obtained for general entropy-dissipating reactions without growth restrictions, and certain models with a non-integrable diffusive flux. The results also apply to a class of (isoenergetic) reaction-cross-diffusion systems.
The convergence to equilibrium for renormalised solutions to nonlinear reaction-diffusion systems is studied. The considered reaction-diffusion systems arise from chemical reaction networks with mass action kinetics and satisfy the complex balanced c ondition. By applying the so-called entropy method, we show that if the system does not have boundary equilibria, then any renormalised solution converges exponentially to the complex balanced equilibrium with a rate, which can be computed explicitly up to a finite dimensional inequality. This inequality is proven via a contradiction argument and thus not explicitly. An explicit method of proof, however, is provided for a specific application modelling a reversible enzyme reaction by exploiting the specific structure of the conservation laws. Our approach is also useful to study the trend to equilibrium for systems possessing boundary equilibria. More precisely, to show the convergence to equilibrium for systems with boundary equilibria, we establish a sufficient condition in terms of a modified finite dimensional inequality along trajectories of the system. By assuming this condition, which roughly means that the system produces too much entropy to stay close to a boundary equilibrium for infinite time, the entropy method shows exponential convergence to equilibrium for renormalised solutions to complex balanced systems with boundary equilibria.
We give a comprehensive study of the analytic properties and long-time behavior of solutions of a reaction-diffusion system in a bounded domain in the case where the nonlinearity satisfies the standard monotonicity assumption. We pay the main attenti on to the supercritical case, where the nonlinearity is not subordinated to the linear part of the equation trying to put as small as possible amount of extra restrictions on this nonlinearity. The properties of such systems in the supercritical case may be very different in comparison with the standard case of subordinated nonlinearities. We examine the global existence and uniqueness of weak and strong solutions, various types of smoothing properties, asymptotic compactness and the existence of global and exponential attractors.
This manuscript extends the analysis of a much studied singularly perturbed three-component reaction-diffusion system for front dynamics in the regime where the essential spectrum is close to the origin. We confirm a conjecture from a preceding paper by proving that the triple multiplicity of the zero eigenvalue gives a Jordan chain of length three. Moreover, we simplify the center manifold reduction and computation of the normal form coefficients by using the Evans function for the eigenvalues. Finally, we prove the unfolding of a Bogdanov-Takens bifurcation with symmetry in the model. This leads to stable periodic front motion, including stable traveling breathers, and these results are illustrated by numerical computations.
We establish global-in-time existence results for thermodynamically consistent reaction-(cross-)diffusion systems coupled to an equation describing heat transfer. Our main interest is to model species-dependent diffusivities, while at the same time e nsuring thermodynamic consistency. A key difficulty of the non-isothermal case lies in the intrinsic presence of cross-diffusion type phenomena like the Soret and the Dufour effect: due to the temperature/energy dependence of the thermodynamic equilibria, a nonvanishing temperature gradient may drive a concentration flux even in a situation with constant concentrations; likewise, a nonvanishing concentration gradient may drive a heat flux even in a case of spatially constant temperature. We use time discretisation and regularisation techniques and derive a priori estimates based on a suitable entropy and the associated entropy production. Renormalised solutions are used in cases where non-integrable diffusion fluxes or reaction terms appear.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا