ﻻ يوجد ملخص باللغة العربية
We establish global-in-time existence results for thermodynamically consistent reaction-(cross-)diffusion systems coupled to an equation describing heat transfer. Our main interest is to model species-dependent diffusivities, while at the same time ensuring thermodynamic consistency. A key difficulty of the non-isothermal case lies in the intrinsic presence of cross-diffusion type phenomena like the Soret and the Dufour effect: due to the temperature/energy dependence of the thermodynamic equilibria, a nonvanishing temperature gradient may drive a concentration flux even in a situation with constant concentrations; likewise, a nonvanishing concentration gradient may drive a heat flux even in a case of spatially constant temperature. We use time discretisation and regularisation techniques and derive a priori estimates based on a suitable entropy and the associated entropy production. Renormalised solutions are used in cases where non-integrable diffusion fluxes or reaction terms appear.
We establish weak-strong uniqueness and stability properties of renormalised solutions to a class of energy-reaction-diffusion systems, which genuinely feature cross-diffusion effects. The systems considered are motivated by thermodynamically consist
We consider the porous medium equation with a power-like reaction term, posed on Riemannian manifolds. Under certain assumptions on $p$ and $m$ in (1.1), and for small enough nonnegative initial data, we prove existence of global in time solutions, p
Reaction diffusion systems are often used to study pattern formation in biological systems. However, most methods for understanding their behavior are challenging and can rarely be applied to complex systems common in biological applications. I prese
We give a comprehensive study of the analytic properties and long-time behavior of solutions of a reaction-diffusion system in a bounded domain in the case where the nonlinearity satisfies the standard monotonicity assumption. We pay the main attenti
In this paper, we study a one dimensional nonlinear equation with diffusion $- u(-partial_{xx})^{frac{alpha}{2}}$ for $0leq alphaleq 2$ and $ u>0$. We use a viscous-splitting algorithm to obtain global nonnegative weak solutions in space $L^1(mathbb{