ﻻ يوجد ملخص باللغة العربية
The convergence to equilibrium for renormalised solutions to nonlinear reaction-diffusion systems is studied. The considered reaction-diffusion systems arise from chemical reaction networks with mass action kinetics and satisfy the complex balanced condition. By applying the so-called entropy method, we show that if the system does not have boundary equilibria, then any renormalised solution converges exponentially to the complex balanced equilibrium with a rate, which can be computed explicitly up to a finite dimensional inequality. This inequality is proven via a contradiction argument and thus not explicitly. An explicit method of proof, however, is provided for a specific application modelling a reversible enzyme reaction by exploiting the specific structure of the conservation laws. Our approach is also useful to study the trend to equilibrium for systems possessing boundary equilibria. More precisely, to show the convergence to equilibrium for systems with boundary equilibria, we establish a sufficient condition in terms of a modified finite dimensional inequality along trajectories of the system. By assuming this condition, which roughly means that the system produces too much entropy to stay close to a boundary equilibrium for infinite time, the entropy method shows exponential convergence to equilibrium for renormalised solutions to complex balanced systems with boundary equilibria.
In this paper we study the rate of convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. We first analyze a three-species system with boundary equilibria in some stoichiometric classes,
In this paper, the finite time extinction of solutions to the fast diffusion system $u_t=mathrm{div}(| abla u|^{p-2} abla u)+v^m$, $v_t=mathrm{div}(| abla v|^{q-2} abla v)+u^n$ is investigated, where $1<p,q<2$, $m,n>0$ and $Omegasubset mathbb{R}^N (N
We use a geometric approach to prove the existence of smooth travelling wave solutions of a nonlinear diffusion-reaction equation with logistic kinetics and a convex nonlinear diffusivity function which changes sign twice in our domain of interest. W
When the temperature of a trapped Bose gas is below the Bose-Einstein transition temperature and above absolute zero, the gas is composed of two distinct components: the Bose-Einstein condensate and the cloud of thermal excitations. The dynamics of t
We consider nonlinear reaction systems satisfying mass-action kinetics with slow and fast reactions. It is known that the fast-reaction-rate limit can be described by an ODE with Lagrange multipliers and a set of nonlinear constraints that ask the fa