ترغب بنشر مسار تعليمي؟ اضغط هنا

Dialogue Response Selection with Hierarchical Curriculum Learning

159   0   0.0 ( 0 )
 نشر من قبل Yixuan Su
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the learning of a matching model for dialogue response selection. Motivated by the recent finding that models trained with random negative samples are not ideal in real-world scenarios, we propose a hierarchical curriculum learning framework that trains the matching model in an easy-to-difficult scheme. Our learning framework consists of two complementary curricula: (1) corpus-level curriculum (CC); and (2) instance-level curriculum (IC). In CC, the model gradually increases its ability in finding the matching clues between the dialogue context and a response candidate. As for IC, it progressively strengthens the models ability in identifying the mismatching information between the dialogue context and a response candidate. Empirical studies on three benchmark datasets with three state-of-the-art matching models demonstrate that the proposed learning framework significantly improves the model performance across various evaluation metrics.



قيم البحث

اقرأ أيضاً

Dialogue policy learning based on reinforcement learning is difficult to be applied to real users to train dialogue agents from scratch because of the high cost. User simulators, which choose random user goals for the dialogue agent to train on, have been considered as an affordable substitute for real users. However, this random sampling method ignores the law of human learning, making the learned dialogue policy inefficient and unstable. We propose a novel framework, Automatic Curriculum Learning-based Deep Q-Network (ACL-DQN), which replaces the traditional random sampling method with a teacher policy model to realize the dialogue policy for automatic curriculum learning. The teacher model arranges a meaningful ordered curriculum and automatically adjusts it by monitoring the learning progress of the dialogue agent and the over-repetition penalty without any requirement of prior knowledge. The learning progress of the dialogue agent reflects the relationship between the dialogue agents ability and the sampled goals difficulty for sample efficiency. The over-repetition penalty guarantees the sampled diversity. Experiments show that the ACL-DQN significantly improves the effectiveness and stability of dialogue tasks with a statistically significant margin. Furthermore, the framework can be further improved by equipping with different curriculum schedules, which demonstrates that the framework has strong generalizability.
With the increasing research interest in dialogue response generation, there is an emerging branch formulating this task as selecting next sentences, where given the partial dialogue contexts, the goal is to determine the most probable next sentence. Following the recent success of the Transformer model, this paper proposes (1) a new variant of attention mechanism based on multi-head attention, called highway attention, and (2) a recurrent model based on transformer and the proposed highway attention, so-called Highway Recurrent Transformer. Experiments on the response selection task in the seventh Dialog System Technology Challenge (DSTC7) show the capability of the proposed model of modeling both utterance-level and dialogue-level information; the effectiveness of each module is further analyzed as well.
We study learning of a matching model for response selection in retrieval-based dialogue systems. The problem is equally important with designing the architecture of a model, but is less explored in existing literature. To learn a robust matching mod el from noisy training data, we propose a general co-teaching framework with three specific teaching strategies that cover both teaching with loss functions and teaching with data curriculum. Under the framework, we simultaneously learn two matching models with independent training sets. In each iteration, one model transfers the knowledge learned from its training set to the other model, and at the same time receives the guide from the other model on how to overcome noise in training. Through being both a teacher and a student, the two models learn from each other and get improved together. Evaluation results on two public data sets indicate that the proposed learning approach can generally and significantly improve the performance of existing matching models.
The response selection has been an emerging research topic due to the growing interest in dialogue modeling, where the goal of the task is to select an appropriate response for continuing dialogues. To further push the end-to-end dialogue model towar d real-world scenarios, the seventh Dialog System Technology Challenge (DSTC7) proposed a challenging track based on real chatlog datasets. The competition focuses on dialogue modeling with several advanced characteristics: (1) natural language diversity, (2) capability of precisely selecting a proper response from a large set of candidates or the scenario without any correct answer, and (3) knowledge grounding. This paper introduces recurrent attention pooling networks (RAP-Net), a novel framework for response selection, which can well estimate the relevance between the dialogue contexts and the candidates. The proposed RAP-Net is shown to be effective and can be generalized across different datasets and settings in the DSTC7 experiments.
293 - Lei Shen , Yang Feng 2020
Emotion-controllable response generation is an attractive and valuable task that aims to make open-domain conversations more empathetic and engaging. Existing methods mainly enhance the emotion expression by adding regularization terms to standard cr oss-entropy loss and thus influence the training process. However, due to the lack of further consideration of content consistency, the common problem of response generation tasks, safe response, is intensified. Besides, query emotions that can help model the relationship between query and response are simply ignored in previous models, which would further hurt the coherence. To alleviate these problems, we propose a novel framework named Curriculum Dual Learning (CDL) which extends the emotion-controllable response generation to a dual task to generate emotional responses and emotional queries alternatively. CDL utilizes two rewards focusing on emotion and content to improve the duality. Additionally, it applies curriculum learning to gradually generate high-quality responses based on the difficulties of expressing various emotions. Experimental results show that CDL significantly outperforms the baselines in terms of coherence, diversity, and relation to emotion factors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا