ترغب بنشر مسار تعليمي؟ اضغط هنا

RAP-Net: Recurrent Attention Pooling Networks for Dialogue Response Selection

110   0   0.0 ( 0 )
 نشر من قبل Chao-Wei Huang
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The response selection has been an emerging research topic due to the growing interest in dialogue modeling, where the goal of the task is to select an appropriate response for continuing dialogues. To further push the end-to-end dialogue model toward real-world scenarios, the seventh Dialog System Technology Challenge (DSTC7) proposed a challenging track based on real chatlog datasets. The competition focuses on dialogue modeling with several advanced characteristics: (1) natural language diversity, (2) capability of precisely selecting a proper response from a large set of candidates or the scenario without any correct answer, and (3) knowledge grounding. This paper introduces recurrent attention pooling networks (RAP-Net), a novel framework for response selection, which can well estimate the relevance between the dialogue contexts and the candidates. The proposed RAP-Net is shown to be effective and can be generalized across different datasets and settings in the DSTC7 experiments.



قيم البحث

اقرأ أيضاً

With the increasing research interest in dialogue response generation, there is an emerging branch formulating this task as selecting next sentences, where given the partial dialogue contexts, the goal is to determine the most probable next sentence. Following the recent success of the Transformer model, this paper proposes (1) a new variant of attention mechanism based on multi-head attention, called highway attention, and (2) a recurrent model based on transformer and the proposed highway attention, so-called Highway Recurrent Transformer. Experiments on the response selection task in the seventh Dialog System Technology Challenge (DSTC7) show the capability of the proposed model of modeling both utterance-level and dialogue-level information; the effectiveness of each module is further analyzed as well.
158 - Yixuan Su , Deng Cai , Qingyu Zhou 2020
We study the learning of a matching model for dialogue response selection. Motivated by the recent finding that models trained with random negative samples are not ideal in real-world scenarios, we propose a hierarchical curriculum learning framework that trains the matching model in an easy-to-difficult scheme. Our learning framework consists of two complementary curricula: (1) corpus-level curriculum (CC); and (2) instance-level curriculum (IC). In CC, the model gradually increases its ability in finding the matching clues between the dialogue context and a response candidate. As for IC, it progressively strengthens the models ability in identifying the mismatching information between the dialogue context and a response candidate. Empirical studies on three benchmark datasets with three state-of-the-art matching models demonstrate that the proposed learning framework significantly improves the model performance across various evaluation metrics.
Dialogue systems require a great deal of different but complementary expertise to assist, inform, and entertain humans. For example, different domains (e.g., restaurant reservation, train ticket booking) of goal-oriented dialogue systems can be viewe d as different skills, and so does ordinary chatting abilities of chit-chat dialogue systems. In this paper, we propose to learn a dialogue system that independently parameterizes different dialogue skills, and learns to select and combine each of them through Attention over Parameters (AoP). The experimental results show that this approach achieves competitive performance on a combined dataset of MultiWOZ, In-Car Assistant, and Persona-Chat. Finally, we demonstrate that each dialogue skill is effectively learned and can be combined with other skills to produce selective responses.
325 - Tianxing He , James Glass 2019
Although deep learning models have brought tremendous advancements to the field of open-domain dialogue response generation, recent research results have revealed that the trained models have undesirable generation behaviors, such as malicious respon ses and generic (boring) responses. In this work, we propose a framework named Negative Training to minimize such behaviors. Given a trained model, the framework will first find generated samples that exhibit the undesirable behavior, and then use them to feed negative training signals for fine-tuning the model. Our experiments show that negative training can significantly reduce the hit rate of malicious responses, or discourage frequent responses and improve response diversity.
200 - Jia-Chen Gu , Tianda Li , Quan Liu 2020
The NOESIS II challenge, as the Track 2 of the 8th Dialogue System Technology Challenges (DSTC 8), is the extension of DSTC 7. This track incorporates new elements that are vital for the creation of a deployed task-oriented dialogue system. This pape r describes our systems that are evaluated on all subtasks under this challenge. We study the problem of employing pre-trained attention-based network for multi-turn dialogue systems. Meanwhile, several adaptation methods are proposed to adapt the pre-trained language models for multi-turn dialogue systems, in order to keep the intrinsic property of dialogue systems. In the released evaluation results of Track 2 of DSTC 8, our proposed models ranked fourth in subtask 1, third in subtask 2, and first in subtask 3 and subtask 4 respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا