ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning a Matching Model with Co-teaching for Multi-turn Response Selection in Retrieval-based Dialogue Systems

169   0   0.0 ( 0 )
 نشر من قبل Chongyang Tao
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study learning of a matching model for response selection in retrieval-based dialogue systems. The problem is equally important with designing the architecture of a model, but is less explored in existing literature. To learn a robust matching model from noisy training data, we propose a general co-teaching framework with three specific teaching strategies that cover both teaching with loss functions and teaching with data curriculum. Under the framework, we simultaneously learn two matching models with independent training sets. In each iteration, one model transfers the knowledge learned from its training set to the other model, and at the same time receives the guide from the other model on how to overcome noise in training. Through being both a teacher and a student, the two models learn from each other and get improved together. Evaluation results on two public data sets indicate that the proposed learning approach can generally and significantly improve the performance of existing matching models.



قيم البحث

اقرأ أيضاً

250 - Chao Xiong , Che Liu , Zijun Xu 2020
Recently, open domain multi-turn chatbots have attracted much interest from lots of researchers in both academia and industry. The dominant retrieval-based methods use context-response matching mechanisms for multi-turn response selection. Specifical ly, the state-of-the-art methods perform the context-response matching by word or segment similarity. However, these models lack a full exploitation of the sentence-level semantic information, and make simple mistakes that humans can easily avoid. In this work, we propose a matching network, called sequential sentence matching network (S2M), to use the sentence-level semantic information to address the problem. Firstly and most importantly, we find that by using the sentence-level semantic information, the network successfully addresses the problem and gets a significant improvement on matching, resulting in a state-of-the-art performance. Furthermore, we integrate the sentence matching we introduced here and the usual word similarity matching reported in the current literature, to match at different semantic levels. Experiments on three public data sets show that such integration further improves the model performance.
This paper proposes an utterance-to-utterance interactive matching network (U2U-IMN) for multi-turn response selection in retrieval-based chatbots. Different from previous methods following context-to-response matching or utterance-to-response matchi ng frameworks, this model treats both contexts and responses as sequences of utterances when calculating the matching degrees between them. For a context-response pair, the U2U-IMN model first encodes each utterance separately using recurrent and self-attention layers. Then, a global and bidirectional interaction between the context and the response is conducted using the attention mechanism to collect the matching information between them. The distances between context and response utterances are employed as a prior component when calculating the attention weights. Finally, sentence-level aggregation and context-response-level aggregation are executed in turn to obtain the feature vector for matching degree prediction. Experiments on four public datasets showed that our proposed method outperformed baseline methods on all metrics, achieving a new state-of-the-art performance and demonstrating compatibility across domains for multi-turn response selection.
Existing multi-turn context-response matching methods mainly concentrate on obtaining multi-level and multi-dimension representations and better interactions between context utterances and response. However, in real-place conversation scenarios, whet her a response candidate is suitable not only counts on the given dialogue context but also other backgrounds, e.g., wording habits, user-specific dialogue history content. To fill the gap between these up-to-date methods and the real-world applications, we incorporate user-specific dialogue history into the response selection and propose a personalized hybrid matching network (PHMN). Our contributions are two-fold: 1) our model extracts personalized wording behaviors from user-specific dialogue history as extra matching information; 2) we perform hybrid representation learning on context-response utterances and explicitly incorporate a customized attention mechanism to extract vital information from context-response interactions so as to improve the accuracy of matching. We evaluate our model on two large datasets with user identification, i.e., personalized Ubuntu dialogue Corpus (P-Ubuntu) and personalized Weibo dataset (P-Weibo). Experimental results confirm that our method significantly outperforms several strong models by combining personalized attention, wording behaviors, and hybrid representation learning.
288 - Jia-Chen Gu , Tianda Li , Quan Liu 2020
In this paper, we study the problem of employing pre-trained language models for multi-turn response selection in retrieval-based chatbots. A new model, named Speaker-Aware BERT (SA-BERT), is proposed in order to make the model aware of the speaker c hange information, which is an important and intrinsic property of multi-turn dialogues. Furthermore, a speaker-aware disentanglement strategy is proposed to tackle the entangled dialogues. This strategy selects a small number of most important utterances as the filtered context according to the speakers information in them. Finally, domain adaptation is performed to incorporate the in-domain knowledge into pre-trained language models. Experiments on five public datasets show that our proposed model outperforms the present models on all metrics by large margins and achieves new state-of-the-art performances for multi-turn response selection.
Building an intelligent dialogue system with the ability to select a proper response according to a multi-turn context is a great challenging task. Existing studies focus on building a context-response matching model with various neural architectures or PLMs and typically learning with a single response prediction task. These approaches overlook many potential training signals contained in dialogue data, which might be beneficial for context understanding and produce better features for response prediction. Besides, the response retrieved from existing dialogue systems supervised by the conventional way still faces some critical challenges, including incoherence and inconsistency. To address these issues, in this paper, we propose learning a context-response matching model with auxiliary self-supervised tasks designed for the dialogue data based on pre-trained language models. Specifically, we introduce four self-supervised tasks including next session prediction, utterance restoration, incoherence detection and consistency discrimination, and jointly train the PLM-based response selection model with these auxiliary tasks in a multi-task manner. By this means, the auxiliary tasks can guide the learning of the matching model to achieve a better local optimum and select a more proper response. Experiment results on two benchmarks indicate that the proposed auxiliary self-supervised tasks bring significant improvement for multi-turn response selection in retrieval-based dialogues, and our model achieves new state-of-the-art results on both datasets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا