ﻻ يوجد ملخص باللغة العربية
We present an efficient implementation of the second- and third-order single-reference algebraic diagrammatic construction theory for electron attachment (EA) and ionization (IP) energies and spectra (EA/IP-ADC(n), n = 2, 3). Our new EA/IP-ADC program features spin adaptation for closed-shell systems, density fitting for efficient handling of the two-electron integral tensors, as well as vectorized and parallel implementation of tensor contractions. We demonstrate capabilities of our efficient implementation by applying the EA/IP-ADC(n) (n = 2, 3) methods to compute the photoelectron spectrum of the TEMPO radical, as well as the vertical and adiabatic electron affinities of TEMPO and two DNA base pairs (guanine-cytosine and adenine-thymine). The spectra and electron affinities computed using large diffuse basis sets with up to 1028 molecular orbitals are found to be in a good agreement with the best available results from the experiment and theoretical simulations.
We report a new implementation of multireference algebraic diagrammatic construction theory (MR-ADC) for simulations of electron attachment and ionization in strongly correlated molecular systems (EA/IP-MR-ADC). Following our recent work on IP-MR-ADC
We present a multi-reference generalization of the algebraic diagrammatic construction theory (ADC) [J. Schirmer, Phys. Rev. A 26, 2395 (1982)] for excited electronic states. The resulting multi-reference ADC approach (MR-ADC) can be efficiently and
We present an implementation and benchmark of new approximations in multireference algebraic diagrammatic construction theory for simulations of neutral electronic excitations and UV/Vis spectra of strongly correlated molecular systems (MR-ADC). Foll
We present a second-order formulation of multi-reference algebraic diagrammatic construction theory [Sokolov, A. Yu. J. Chem. Phys. 2018, 149, 204113] for simulating photoelectron spectra of strongly correlated systems (MR-ADC(2)). The MR-ADC(2) meth
We present implementation of second- and third-order algebraic diagrammatic construction theory for efficient and accurate computations of molecular electron affinities (EA), ionization potentials (IP), and densities of states (EA-/IP-ADC(n), n = 2,