ﻻ يوجد ملخص باللغة العربية
We present implementation of second- and third-order algebraic diagrammatic construction theory for efficient and accurate computations of molecular electron affinities (EA), ionization potentials (IP), and densities of states (EA-/IP-ADC(n), n = 2, 3). Our work utilizes the non-Dyson formulation of ADC for the single-particle propagator and reports working equations and benchmark results for the EA-ADC(2) and EA-ADC(3) approximations. We describe two algorithms for solving EA-/IP-ADC equations: (i) conventional algorithm that uses iterative diagonalization techniques to compute low-energy EA, IP, and density of states, and (ii) Greens function algorithm (GF-ADC) that solves a system of linear equations to compute density of states directly for a specified spectral region. To assess accuracy of EA-ADC(2) and EA-ADC(3), we benchmark their performance for a set of atoms, small molecules, and five DNA/RNA nucleobases. As our next step, we demonstrate efficiency of our GF-ADC implementation by computing core-level K-, L-, and M-shell ionization energies of a zinc atom without introducing core-valence separation approximation. Finally, we use EA- and IP-ADC methods to compute band gaps of equally-spaced hydrogen chains Hn with n up to 150, providing their estimates near thermodynamic limit. Our results demonstrate that EA-/IP-ADC(n) (n = 2, 3) methods are efficient and accurate alternatives to widely used electronic structure methods for simulations of electron attachment and ionization properties.
We present an implementation and benchmark of new approximations in multireference algebraic diagrammatic construction theory for simulations of neutral electronic excitations and UV/Vis spectra of strongly correlated molecular systems (MR-ADC). Foll
We present a multi-reference generalization of the algebraic diagrammatic construction theory (ADC) [J. Schirmer, Phys. Rev. A 26, 2395 (1982)] for excited electronic states. The resulting multi-reference ADC approach (MR-ADC) can be efficiently and
We report a new implementation of multireference algebraic diagrammatic construction theory (MR-ADC) for simulations of electron attachment and ionization in strongly correlated molecular systems (EA/IP-MR-ADC). Following our recent work on IP-MR-ADC
We present a second-order formulation of multi-reference algebraic diagrammatic construction theory [Sokolov, A. Yu. J. Chem. Phys. 2018, 149, 204113] for simulating photoelectron spectra of strongly correlated systems (MR-ADC(2)). The MR-ADC(2) meth
We present an efficient implementation of the second- and third-order single-reference algebraic diagrammatic construction theory for electron attachment (EA) and ionization (IP) energies and spectra (EA/IP-ADC(n), n = 2, 3). Our new EA/IP-ADC progra