ﻻ يوجد ملخص باللغة العربية
We report a new implementation of multireference algebraic diagrammatic construction theory (MR-ADC) for simulations of electron attachment and ionization in strongly correlated molecular systems (EA/IP-MR-ADC). Following our recent work on IP-MR-ADC [J. Chem. Theory Comput. 2019, 15, 5908], we present the first implementation of the second-order MR-ADC method for electron attachment (EA-MR-ADC(2)), as well as two extended second-order approximations (EA- and IP-MR-ADC(2)-X) that incorporate a partial treatment of third-order electron correlation effects. Introducing a small approximation for the second-order amplitudes of the effective Hamiltonian, our implementation of EA- and IP-MR-ADC(2)-X has a low O(M^5) computational scaling with the basis set size M. Additionally, we describe an efficient algorithm for solving the first-order amplitude equations in MR-ADC and partially-contracted second-order N-electron valence perturbation theory (NEVPT2) that completely avoids computation of the four-particle reduced density matrices without introducing any approximations or imaginary-time propagation. For a benchmark set of eight small molecules, carbon dimer, and a twisted ethylene, we demonstrate that EA- and IP-MR-ADC(2)-X achieve accuracy similar to that of strongly-contracted NEVPT2, while having a lower computational scaling with the active space size and providing efficient access to transition properties.
We present an implementation and benchmark of new approximations in multireference algebraic diagrammatic construction theory for simulations of neutral electronic excitations and UV/Vis spectra of strongly correlated molecular systems (MR-ADC). Foll
We present a second-order formulation of multi-reference algebraic diagrammatic construction theory [Sokolov, A. Yu. J. Chem. Phys. 2018, 149, 204113] for simulating photoelectron spectra of strongly correlated systems (MR-ADC(2)). The MR-ADC(2) meth
We present an efficient implementation of the second- and third-order single-reference algebraic diagrammatic construction theory for electron attachment (EA) and ionization (IP) energies and spectra (EA/IP-ADC(n), n = 2, 3). Our new EA/IP-ADC progra
We present a multi-reference generalization of the algebraic diagrammatic construction theory (ADC) [J. Schirmer, Phys. Rev. A 26, 2395 (1982)] for excited electronic states. The resulting multi-reference ADC approach (MR-ADC) can be efficiently and
We present implementation of second- and third-order algebraic diagrammatic construction theory for efficient and accurate computations of molecular electron affinities (EA), ionization potentials (IP), and densities of states (EA-/IP-ADC(n), n = 2,