ﻻ يوجد ملخص باللغة العربية
While mixtures of Gaussian distributions have been studied for more than a century (Pearson, 1894), the construction of a reference Bayesian analysis of those models still remains unsolved, with a general prohibition of the usage of improper priors (Fruwirth-Schnatter, 2006) due to the ill-posed nature of such statistical objects. This difficulty is usually bypassed by an empirical Bayes resolution (Richardson and Green, 1997). By creating a new parameterisation cantered on the mean and possibly the variance of the mixture distribution itself, we manage to develop here a weakly informative prior for a wide class of mixtures with an arbitrary number of components. We demonstrate that some posterior distributions associated with this prior and a minimal sample size are proper. We provide MCMC implementations that exhibit the expected exchangeability. We only study here the univariate case, the extension to multivariate location-scale mixtures being currently under study. An R package called Ultimixt is associated with this paper.
The use of a finite mixture of normal distributions in model-based clustering allows to capture non-Gaussian data clusters. However, identifying the clusters from the normal components is challenging and in general either achieved by imposing constra
We develop a novel exploratory tool for non-Euclidean object data based on data depth, extending the celebrated Tukeys depth for Euclidean data. The proposed metric halfspace depth, applicable to data objects in a general metric space, assigns to dat
We use the theory of normal variance-mean mixtures to derive a data augmentation scheme for models that include gamma functions. Our methodology applies to many situations in statistics and machine learning, including Multinomial-Dirichlet distributi
Hamiltonian Monte Carlo (HMC) is a popular sampling method in Bayesian inference. Recently, Heng & Jacob (2019) studied Metropolis HMC with couplings for unbiased Monte Carlo estimation, establishing a generic parallelizable scheme for HMC. However,
We present the Sequential Ensemble Transform (SET) method, an approach for generating approximate samples from a Bayesian posterior distribution. The method explores the posterior distribution by solving a sequence of discrete optimal transport probl