ﻻ يوجد ملخص باللغة العربية
One challenge of machine translation is how to quickly adapt to unseen domains in face of surging events like COVID-19, in which case timely and accurate translation of in-domain information into multiple languages is critical but little parallel data is available yet. In this paper, we propose an approach that enables rapid domain adaptation from the perspective of unsupervised translation. Our proposed approach only requires in-domain monolingual data and can be quickly applied to a preexisting translation system trained on general domain, reaching significant gains on in-domain translation quality with little or no drop on general-domain. We also propose an effective procedure of simultaneous adaptation for multiple domains and languages. To the best of our knowledge, this is the first attempt that aims to address unsupervised multilingual domain adaptation.
Prior work has proved that Translation memory (TM) can boost the performance of Neural Machine Translation (NMT). In contrast to existing work that uses bilingual corpus as TM and employs source-side similarity search for memory retrieval, we propose
Over the last few years two promising research directions in low-resource neural machine translation (NMT) have emerged. The first focuses on utilizing high-resource languages to improve the quality of low-resource languages via multilingual NMT. The
Self-training has proven effective for improving NMT performance by augmenting model training with synthetic parallel data. The common practice is to construct synthetic data based on a randomly sampled subset of large-scale monolingual data, which w
Neural network methods exhibit strong performance only in a few resource-rich domains. Practitioners, therefore, employ domain adaptation from resource-rich domains that are, in most cases, distant from the target domain. Domain adaptation between di
This paper considers the unsupervised domain adaptation problem for neural machine translation (NMT), where we assume the access to only monolingual text in either the source or target language in the new domain. We propose a cross-lingual data selec