ترغب بنشر مسار تعليمي؟ اضغط هنا

Generalised Unsupervised Domain Adaptation of Neural Machine Translation with Cross-Lingual Data Selection

95   0   0.0 ( 0 )
 نشر من قبل Thuy-Trang Vu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper considers the unsupervised domain adaptation problem for neural machine translation (NMT), where we assume the access to only monolingual text in either the source or target language in the new domain. We propose a cross-lingual data selection method to extract in-domain sentences in the missing language side from a large generic monolingual corpus. Our proposed method trains an adaptive layer on top of multilingual BERT by contrastive learning to align the representation between the source and target language. This then enables the transferability of the domain classifier between the languages in a zero-shot manner. Once the in-domain data is detected by the classifier, the NMT model is then adapted to the new domain by jointly learning translation and domain discrimination tasks. We evaluate our cross-lingual data selection method on NMT across five diverse domains in three language pairs, as well as a real-world scenario of translation for COVID-19. The results show that our proposed method outperforms other selection baselines up to +1.5 BLEU score.



قيم البحث

اقرأ أيضاً

Recently, $k$NN-MT has shown the promising capability of directly incorporating the pre-trained neural machine translation (NMT) model with domain-specific token-level $k$-nearest-neighbor ($k$NN) retrieval to achieve domain adaptation without retrai ning. Despite being conceptually attractive, it heavily relies on high-quality in-domain parallel corpora, limiting its capability on unsupervised domain adaptation, where in-domain parallel corpora are scarce or nonexistent. In this paper, we propose a novel framework that directly uses in-domain monolingual sentences in the target language to construct an effective datastore for $k$-nearest-neighbor retrieval. To this end, we first introduce an autoencoder task based on the target language, and then insert lightweight adapters into the original NMT model to map the token-level representation of this task to the ideal representation of translation task. Experiments on multi-domain datasets demonstrate that our proposed approach significantly improves the translation accuracy with target-side monolingual data, while achieving comparable performance with back-translation.
Domain adaptation has been well-studied in supervised neural machine translation (SNMT). However, it has not been well-studied for unsupervised neural machine translation (UNMT), although UNMT has recently achieved remarkable results in several domai n-specific language pairs. Besides the inconsistent domains between training data and test data for SNMT, there sometimes exists an inconsistent domain between two monolingual training data for UNMT. In this work, we empirically show different scenarios for unsupervised neural machine translation. Based on these scenarios, we revisit the effect of the existing domain adaptation methods including batch weighting and fine tuning methods in UNMT. Finally, we propose modified methods to improve the performances of domain-specific UNMT systems.
305 - Juntao Li , Ruidan He , Hai Ye 2020
Recent research indicates that pretraining cross-lingual language models on large-scale unlabeled texts yields significant performance improvements over various cross-lingual and low-resource tasks. Through training on one hundred languages and terab ytes of texts, cross-lingual language models have proven to be effective in leveraging high-resource languages to enhance low-resource language processing and outperform monolingual models. In this paper, we further investigate the cross-lingual and cross-domain (CLCD) setting when a pretrained cross-lingual language model needs to adapt to new domains. Specifically, we propose a novel unsupervised feature decomposition method that can automatically extract domain-specific features and domain-invariant features from the entangled pretrained cross-lingual representations, given unlabeled raw texts in the source language. Our proposed model leverages mutual information estimation to decompose the representations computed by a cross-lingual model into domain-invariant and domain-specific parts. Experimental results show that our proposed method achieves significant performance improvements over the state-of-the-art pretrained cross-lingual language model in the CLCD setting. The source code of this paper is publicly available at https://github.com/lijuntaopku/UFD.
One challenge of machine translation is how to quickly adapt to unseen domains in face of surging events like COVID-19, in which case timely and accurate translation of in-domain information into multiple languages is critical but little parallel dat a is available yet. In this paper, we propose an approach that enables rapid domain adaptation from the perspective of unsupervised translation. Our proposed approach only requires in-domain monolingual data and can be quickly applied to a preexisting translation system trained on general domain, reaching significant gains on in-domain translation quality with little or no drop on general-domain. We also propose an effective procedure of simultaneous adaptation for multiple domains and languages. To the best of our knowledge, this is the first attempt that aims to address unsupervised multilingual domain adaptation.
Neural network methods exhibit strong performance only in a few resource-rich domains. Practitioners, therefore, employ domain adaptation from resource-rich domains that are, in most cases, distant from the target domain. Domain adaptation between di stant domains (e.g., movie subtitles and research papers), however, cannot be performed effectively due to mismatches in vocabulary; it will encounter many domain-specific words (e.g., angstrom) and words whose meanings shift across domains(e.g., conductor). In this study, aiming to solve these vocabulary mismatches in domain adaptation for neural machine translation (NMT), we propose vocabulary adaptation, a simple method for effective fine-tuning that adapts embedding layers in a given pre-trained NMT model to the target domain. Prior to fine-tuning, our method replaces the embedding layers of the NMT model by projecting general word embeddings induced from monolingual data in a target domain onto a source-domain embedding space. Experimental results indicate that our method improves the performance of conventional fine-tuning by 3.86 and 3.28 BLEU points in En-Ja and De-En translation, respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا