ﻻ يوجد ملخص باللغة العربية
Self-training has proven effective for improving NMT performance by augmenting model training with synthetic parallel data. The common practice is to construct synthetic data based on a randomly sampled subset of large-scale monolingual data, which we empirically show is sub-optimal. In this work, we propose to improve the sampling procedure by selecting the most informative monolingual sentences to complement the parallel data. To this end, we compute the uncertainty of monolingual sentences using the bilingual dictionary extracted from the parallel data. Intuitively, monolingual sentences with lower uncertainty generally correspond to easy-to-translate patterns which may not provide additional gains. Accordingly, we design an uncertainty-based sampling strategy to efficiently exploit the monolingual data for self-training, in which monolingual sentences with higher uncertainty would be sampled with higher probability. Experimental results on large-scale WMT English$Rightarrow$German and English$Rightarrow$Chinese datasets demonstrate the effectiveness of the proposed approach. Extensive analyses suggest that emphasizing the learning on uncertain monolingual sentences by our approach does improve the translation quality of high-uncertainty sentences and also benefits the prediction of low-frequency words at the target side.
Over the last few years two promising research directions in low-resource neural machine translation (NMT) have emerged. The first focuses on utilizing high-resource languages to improve the quality of low-resource languages via multilingual NMT. The
Prior work has proved that Translation memory (TM) can boost the performance of Neural Machine Translation (NMT). In contrast to existing work that uses bilingual corpus as TM and employs source-side similarity search for memory retrieval, we propose
Unsupervised neural machine translation (UNMT) that relies solely on massive monolingual corpora has achieved remarkable results in several translation tasks. However, in real-world scenarios, massive monolingual corpora do not exist for some extreme
One challenge of machine translation is how to quickly adapt to unseen domains in face of surging events like COVID-19, in which case timely and accurate translation of in-domain information into multiple languages is critical but little parallel dat
Learning multilingual and multi-domain translation model is challenging as the heterogeneous and imbalanced data make the model converge inconsistently over different corpora in real world. One common practice is to adjust the share of each corpus in