ﻻ يوجد ملخص باللغة العربية
The generalized amplitude damping (GAD) quantum channel implements the interaction between a qubit and an environment with arbitrary temperature and arbitrary interaction time. Here, we implement a photonic version of the GAD for the case of infinite interaction time (full thermalization). We also show that this quantum channel works as a thermal bath with controlled temperature.
Here we propose an experiment in Linear Optical Quantum Computing (LOQC) using the framework first developed by Knill, Laflamme, and Milburn. This experiment will test the ideas of the authors previous work on imperfect LOQC gates using number-resolv
An experiment is performed to reconstruct an unknown photonic quantum state with a limited amount of copies. A semi-quantum reinforcement learning approach is employed to adapt one qubit state, an agent, to an unknown quantum state, an environment, b
Full quantum state tomography (FQST) plays a unique role in the estimation of the state of a quantum system without emph{a priori} knowledge or assumptions. Unfortunately, since FQST requires informationally (over)complete measurements, both the numb
Delivering on the revolutionary promise of a universal quantum computer will require processors with millions of quantum bits (qubits). In superconducting quantum processors, each qubit is individually addressed with microwave signal lines that conne
We introduce a design of a superconducting flux qubit capable of holding a full magnetic flux quantum $phi_{0}$, which arguably is an essential property for applications in charged particle optics. The qubit comprises a row of $N$ constituent qubits,