ﻻ يوجد ملخص باللغة العربية
Here we propose an experiment in Linear Optical Quantum Computing (LOQC) using the framework first developed by Knill, Laflamme, and Milburn. This experiment will test the ideas of the authors previous work on imperfect LOQC gates using number-resolving photon detectors. We suggest a relatively simple physical apparatus capable of producing CZ gates with controllable fidelity less than 1 and success rates higher than the current theoretical maximum (S=2/27) for perfect fidelity. These experimental setups are within the reach of many experimental groups and would provide an interesting experiment in photonic quantum computing.
Numerical optimization is used to design linear-optical devices that implement a desired quantum gate with perfect fidelity, while maximizing the success rate. For the 2-qubit CS (or CNOT) gate, we provide numerical evidence that the maximum success
We combine numerical optimization techniques [Uskov et al., Phys. Rev. A 79, 042326 (2009)] with symmetries of the Weyl chamber to obtain optimal implementations of generic linear-optical KLM-type two-qubit entangling gates. We find that while any tw
We use the numerical optimization techniques of Uskov et al. [PRA 81, 012303 (2010)] to investigate the behavior of the success rates for KLM style [Nature 409, 46 (2001)] two- and three-qubit entangling gates. The methods are first demonstrated at p
Near-term quantum computers are limited by the decoherence of qubits to only being able to run low-depth quantum circuits with acceptable fidelity. This severely restricts what quantum algorithms can be compiled and implemented on such devices. One w
We propose two optimal phase-estimation schemes that can be used for quantum-enhanced long-baseline interferometry. By using distributed entanglement, it is possible to eliminate the loss of stellar photons during transmission over the baselines. The