ﻻ يوجد ملخص باللغة العربية
Delivering on the revolutionary promise of a universal quantum computer will require processors with millions of quantum bits (qubits). In superconducting quantum processors, each qubit is individually addressed with microwave signal lines that connect room temperature electronics to the cryogenic environment of the quantum circuit. The complexity and heat load associated with the multiple coaxial lines per qubit limits the possible size of a processor to a few thousand qubits. Here we introduce a photonic link employing an optical fiber to guide modulated laser light from room temperature to a cryogenic photodetector, capable of delivering shot-noise limited microwave signals directly at millikelvin temperatures. By demonstrating high-fidelity control and readout of a superconducting qubit, we show that this photonic link can meet the stringent requirements of superconducting quantum information processing. Leveraging the low thermal conductivity and large intrinsic bandwidth of optical fiber enables efficient and massively multiplexed delivery of coherent microwave control pulses, providing a path towards a million-qubit universal quantum computer.
We present a fabrication process for fully superconducting interconnects compatible with superconducting qubit technology. These interconnects allow for the 3D integration of quantum circuits without introducing lossy amorphous dielectrics. They are
We report high-fidelity state readout of a trapped ion qubit using a trap-integrated photon detector. We determine the hyperfine qubit state of a single $^9$Be$^+$ ion held in a surface-electrode rf ion trap by counting state-dependent ion fluorescen
Medium-scale ensembles of coupled qubits offer a platform for near-term quantum technologies including computing, sensing, and the study of mesoscopic quantum systems. Atom-like emitters in solids have emerged as promising quantum memories, with demo
While relatively easy to engineer, static transverse coupling between a qubit and a cavity mode satisfies the criteria for a quantum non-demolition (QND) measurement only if the coupling between the qubit and cavity is much less than their mutual det
We have designed, fabricated and operated a scalable system for applying independently programmable time-independent, and limited time-dependent flux biases to control superconducting devices in an integrated circuit. Here we report on the operation