ﻻ يوجد ملخص باللغة العربية
We compare three major large-scale hydrodynamical galaxy simulations (EAGLE, Illustris-TNG, and SIMBA) by forward modeling simulated galaxies into observational space and computing the fraction of isolated and quiescent low mass galaxies as a function of stellar mass. Using SDSS as our observational template, we create mock surveys and synthetic spectroscopic and photometric observations of each simulation, adding realistic noise and observational limits. All three simulations show a decrease in the number of quiescent, isolated galaxies in the mass range $mathrm{M}_* = 10^{9-10} mathrm{M}_odot$, in broad agreement with observations. However, even after accounting for observational and selection biases, none of the simulations reproduce the observed absence of quiescent field galaxies below $mathrm{M}_*=10^{9} mathrm{M}_odot$. We find that the low mass quiescent populations selected via synthetic observations have consistent quenching timescales, despite apparent variation in the late time star formation histories. The effect of increased numerical resolution is not uniform across simulations and cannot fully mitigate the differences between the simulations and the observations. The framework presented here demonstrates a path towards more robust and accurate comparisons between theoretical simulations and galaxy survey observations, while the quenching threshold serves as a sensitive probe of feedback implementations.
We present the Empirical Dust Attenuation (EDA) framework -- a flexible prescription for assigning realistic dust attenuation to simulated galaxies based on their physical properties. We use the EDA to forward model synthetic observations for three s
We present intensity-corrected Herschel maps at 100 um, 160 um, 250 um, 350 um, and 500 um for 56 isolated low-mass clouds. We determine the zero-point corrections for Herschel PACS and SPIRE maps from the Herschel Science Archive (HSA) using Planck
(Abridged) By means of high-resolution cosmological simulations in the context of the LCDM scenario, the specific star formation rate (SSFR=SFR/Ms, Ms is the stellar mass)--Ms and stellar mass fraction (Fs=Ms/Mh, Mh is the halo mass)--Ms relations of
We compare the star-forming properties of satellites around Milky Way (MW) analogs from the Stage~II release of the Satellites Around Galactic Analogs Survey (SAGA-II) to those from the APOSTLE and Auriga cosmological zoom-in simulation suites. We us
Recent advancements in the imaging of low-surface-brightness objects revealed numerous ultra-diffuse galaxies in the local Universe. These peculiar objects are unusually extended and faint: their effective radii are comparable to the Milky Way, but t