ﻻ يوجد ملخص باللغة العربية
We present intensity-corrected Herschel maps at 100 um, 160 um, 250 um, 350 um, and 500 um for 56 isolated low-mass clouds. We determine the zero-point corrections for Herschel PACS and SPIRE maps from the Herschel Science Archive (HSA) using Planck data. Since these HSA maps are small, we cannot correct them using typical methods. Here, we introduce a technique to measure the zero-point corrections for small Herschel maps. We use radial profiles to identify offsets between the observed HSA intensities and the expected intensities from Planck. Most clouds have reliable offset measurements with this technique. In addition, we find that roughly half of the clouds have underestimated HSA-SPIRE intensities in their outer envelopes relative to Planck, even though the HSA-SPIRE maps were previously zero-point corrected. Using our technique, we produce corrected Herschel intensity maps for all 56 clouds and determine their line-of-sight average dust temperatures and optical depths from modified black body fits. The clouds have typical temperatures of ~ 14-20 K and optical depths of ~ 1e-5 - 1e-3. Across the whole sample, we find an anti-correlation between temperature and optical depth. We also find lower temperatures than what was measured in previous Herschel studies, which subtracted out a background level from their intensity maps to circumvent the zero-point correction. Accurate Herschel observations of clouds are key to obtain accurate density and temperature profiles. To make such future analyses possible, intensity-corrected maps for all 56 clouds are publicly available in the electronic version.
Supernova fallback disks around neutron stars have been discussed to influence the evolution of the diverse neutron star populations. Slowly rotating neutron stars are most promising to find such disks. Searching for the cold and warm debris of old f
We present the first Herschel PACS and SPIRE images of the low-metallicity galaxy NGC6822 observed from 70 to 500 mu and clearly resolve the HII regions with PACS and SPIRE. We find that the ratio 250/500 is dependent on the 24 mu surface brightness
We compare three major large-scale hydrodynamical galaxy simulations (EAGLE, Illustris-TNG, and SIMBA) by forward modeling simulated galaxies into observational space and computing the fraction of isolated and quiescent low mass galaxies as a functio
We demonstrate the use of the 3D Monte Carlo radiative transfer code PHAETHON to model infrared-dark clouds (IRDCs) that are externally illuminated by the interstellar radiation field (ISRF). These clouds are believed to be the earliest observed phas
Of all the factors that influence star formation, magnetic fields are perhaps the least well understood. The goal of this paper is to characterize the 3D magnetic field properties of nearby molecular clouds through various methods of statistically an