ﻻ يوجد ملخص باللغة العربية
We present the Empirical Dust Attenuation (EDA) framework -- a flexible prescription for assigning realistic dust attenuation to simulated galaxies based on their physical properties. We use the EDA to forward model synthetic observations for three state-of-the-art large-scale cosmological hydrodynamical simulations: SIMBA, IllustrisTNG, and EAGLE. We then compare the optical and UV color-magnitude relations, $(g-r) - M_r$ and $(FUV-NUV)-M_r$, of the simulations to a $M_r < -20$ and UV complete SDSS galaxy sample using likelihood-free inference. Without dust, none of the simulations match observations, as expected. With the EDA, however, we can reproduce the observed color-magnitude with all three simulations. Furthermore, the attenuation curves predicted by our dust prescription are in good agreement with the observed attenuation-slope relations and attenuation curves of star-forming galaxies. However, the EDA does not predict star-forming galaxies with low $A_V$ since simulated star-forming galaxies are intrinsically much brighter than observations. Additionally, the EDA provides, for the first time, predictions on the attenuation curves of quiescent galaxies, which are challenging to measure observationally. Simulated quiescent galaxies require shallower attenuation curves with lower amplitude than star-forming galaxies. The EDA, combined with forward modeling, provides an effective approach for shedding light on dust in galaxies and probing hydrodynamical simulations. This work also illustrates a major limitation in comparing galaxy formation models: by adjusting dust attenuation, simulations that predict significantly different galaxy populations can reproduce the same UV and optical observations.
We present a suite of 34 high-resolution cosmological zoom-in simulations consisting of thousands of halos up to M_halo~10^12 M_sun (M_star~10^10.5 M_sun) at z>=5 from the Feedback in Realistic Environments project. We post-process our simulations wi
Dust has been detected in high-redshift ($z>5$) galaxies but its origin is still being debated. Dust production in high-redshift galaxies could be dominated by stellar production or by accretion (dust growth) in the interstellar medium. Previous stud
We compare three major large-scale hydrodynamical galaxy simulations (EAGLE, Illustris-TNG, and SIMBA) by forward modeling simulated galaxies into observational space and computing the fraction of isolated and quiescent low mass galaxies as a functio
We utilise a series of high-resolution cosmological zoom simulations of galaxy formation to investigate the relationship between the ultraviolet (UV) slope, beta, and the ratio of the infrared luminosity to UV luminosity (IRX) in the spectral energy
We derive the UV-optical stellar dust attenuation curve of galaxies at z=1.4-2.6 as a function of gas-phase metallicity. We use a sample of 218 star-forming galaxies, excluding those with very young or heavily obscured star formation, from the MOSFIR