ترغب بنشر مسار تعليمي؟ اضغط هنا

Comparative Study of Microwave Polar Brightening, Coronal Holes, and Solar Wind Over the Solar Poles

76   0   0.0 ( 0 )
 نشر من قبل Ken'ichi Fujiki Dr.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We comparatively studied the long-term variation (1992-2017) in polar brightening observed with the Nobeyama Radioheliograph, the polar solar wind velocity with interplanetary scintillation observations at the Institute for Space-Earth Environmental Research, and the coronal hole distribution computed by potential field calculations of the solar corona using synoptic magnetogram data obtained at Kitt Peak National Solar Observatory. First, by comparing the solar wind velocity (V) and the brightness temperature (T_b) in the polar region, we found good correlation coefficients (CCs) between V and T_b in the polar regions, CC = 0.91 (0.83) for the northern (southern) polar region, and we obtained the V-T_b relationship as V =12.6 (T_b-10,667)^{1/2}+432. We also confirmed that the CC of V-T_b is higher than those of V-B and V-B/f, where B and f are the polar magnetic field strength and magnetic flux expansion rate, respectively. These results indicate that T_b is a more direct parameter than B or B/f for expressing solar wind velocity. Next, we analyzed the long-term variation of the polar brightening and its relation to the area of the polar coronal hole (A). As a result, we found that the polar brightening matches the probability distribution of the predicted coronal hole and that the CC between T_b and A is remarkably high, CC = 0.97. This result indicates that the polar brightening is strongly coupled to the size of the polar coronal hole. Therefore, the reasonable correlation of V-T_b is explained by V-A. In addition, by considering the anti-correlation between A and f found in a previous study, we suggest that the V-T_b relationship is another expression of the Wang-Sheeley relationship (V-1/f) in the polar regions.



قيم البحث

اقرأ أيضاً

Coronal holes (CHs) are regions of open magnetic flux which are the source of high speed solar wind (HSSW) streams. To date, it is not clear which aspects of CHs are of most influence on the properties of the solar wind as it expands through the Heli osphere. Here, we study the relationship between CH properties extracted from AIA (Atmospheric Imaging Assembly) images using CHIMERA (Coronal Hole Identification via Multi-thermal Emission Recognition Algorithm) and HSSW measurements from ACE (Advanced Composition Explorer) at L1. For CH longitudinal widths $Deltatheta_{CH}<$67$^{circ}$, the peak SW velocity ($v_{max}$) is found to scale as $v_{max}~approx~330.8~+~5.7~Deltatheta_{CH}$~km~s$^{-1}$. For larger longitudinal widths ($Deltatheta_{CH}>$67$^{circ}$), $v_{max}$ is found to tend to a constant value ($sim$710~km~s$^{-1}$). Furthermore, we find that the duration of HSSW streams ($Delta t$) are directly related to the longitudinal width of CHs ($Delta t_{SW}$~$approx$~0.09$Deltatheta_{CH}$) and that their longitudinal expansion factor is $f_{SW}~approx 1.2~pm 0.1$. We also derive an expression for the coronal hole flux-tube expansion factor, $f_{FT}$, which varies as $f_{SW} gtrsim f_{FT} gtrsim 0.8$. These results enable us to estimate the peak speeds and durations of HSSW streams at L1 using the properties of CHs identified in the solar corona.
As the solar wind propagates through the heliosphere, dynamical processes irreversibly erase the signatures of the near-Sun heating and acceleration processes. The elemental fractionation of the solar wind should not change during transit however, ma king it an ideal tracer of these processes. We aimed to verify directly if the solar wind elemental fractionation is reflective of the coronal source region fractionation, both within and across different solar wind source regions. A backmapping scheme was used to predict where solar wind measured by the Advanced Composition Explorer (ACE) originated in the corona. The coronal composition measured by the Hinode Extreme ultraviolet Imaging Spectrometer (EIS) at the source regions was then compared with the in-situ solar wind composition. On hourly timescales there was no apparent correlation between coronal and solar wind composition. In contrast, the distribution of fractionation values within individual source regions was similar in both the corona and solar wind, but distributions between different sources have significant overlap. The matching distributions directly verifies that elemental composition is conserved as the plasma travels from the corona to the solar wind, further validating it as a tracer of heating and acceleration processes. The overlap of fractionation values between sources means it is not possible to identify solar wind source regions solely by comparing solar wind and coronal composition measurements, but a comparison can be used to verify consistency with predicted spacecraft-corona connections.
Both coronal holes and active regions are source regions of the solar wind. The distribution of these coronal structures across both space and time is well known, but it is unclear how much each source contributes to the solar wind. In this study we use photospheric magnetic field maps observed over the past four solar cycles to estimate what fraction of magnetic open solar flux is rooted in active regions, a proxy for the fraction of all solar wind originating in active regions. We find that the fractional contribution of active regions to the solar wind varies between 30% to 80% at any one time during solar maximum and is negligible at solar minimum, showing a strong correlation with sunspot number. While active regions are typically confined to latitudes $pm$30$^{circ}$ in the corona, the solar wind they produce can reach latitudes up to $pm$60$^{circ}$. Their fractional contribution to the solar wind also correlates with coronal mass ejection rate, and is highly variable, changing by $pm$20% on monthly timescales within individual solar maxima. We speculate that these variations could be driven by coronal mass ejections causing reconfigurations of the coronal magnetic field on sub-monthly timescales.
This paper reviews our growing understanding of the physics behind coronal heating (in open-field regions) and the acceleration of the solar wind. Many new insights have come from the last solar cycles worth of observations and theoretical work. Meas urements of the plasma properties in the extended corona, where the primary solar wind acceleration occurs, have been key to discriminating between competing theories. We describe how UVCS/SOHO measurements of coronal holes and streamers over the last 14 years have provided clues about the detailed kinetic processes that energize both fast and slow wind regions. We also present a brief survey of current ideas involving the coronal source regions of fast and slow wind streams, and how these change over the solar cycle. These source regions are discussed in the context of recent theoretical models (based on Alfven waves and MHD turbulence) that have begun to successfully predict both the heating and acceleration in fast and slow wind regions with essentially no free parameters. Some new results regarding these models - including a quantitative prediction of the lower density and temperature at 1 AU seen during the present solar minimum in comparison to the prior minimum - are also shown.
The relationship between the peak velocities of high-speed solar wind streams near Earth and the areas of their solar source regions, i.e., coronal holes, has been known since the 1970s, but it is still physically not well understood. We perform 3D m agnetohydrodynamic (MHD) simulations using the European Heliospheric Forecasting Information Asset (EUHFORIA) code to show that this empirical relationship forms during the propagation phase of high-speed streams from the Sun to Earth. For this purpose, we neglect the acceleration phase of high-speed streams, and project the areas of coronal holes to a sphere at 0.1 au. We then vary only the areas and latitudes of the coronal holes. The velocity, temperature, and density in the cross section of the corresponding highspeed streams at 0.1 au are set to constant, homogeneous values. Finally, we propagate the associated high-speed streams through the inner heliosphere using the EUHFORIA code. The simulated high-speed stream peak velocities at Earth reveal a linear dependence on the area of their source coronal holes. The slopes of the relationship decrease with increasing latitudes of the coronal holes, and the peak velocities saturate at a value of about 730 km/s, similar to the observations. These findings imply that the empirical relationship between the coronal hole areas and high-speed stream peak velocities does not describe the acceleration phase of high-speed streams, but is a result of the high-speed stream propagation from the Sun to Earth.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا