ﻻ يوجد ملخص باللغة العربية
The goal of this paper is to investigate the method outlined by one of us (PR) in Cherubini et al. (2009) to compute option prices. We name it the SINC approach. While the COS method by Fang and Osterlee (2009) leverages the Fourier-cosine expansion of truncated densities, the SINC approach builds on the Shannon Sampling Theorem revisited for functions with bounded support. We provide several results which were missing in the early derivation: i) a rigorous proof of the convergence of the SINC formula to the correct option price when the support grows and the number of Fourier frequencies increases; ii) ready to implement formulas for put, Cash-or-Nothing, and Asset-or-Nothing options; iii) a systematic comparison with the COS formula for several log-price models; iv) a numerical challenge against alternative Fast Fourier specifications, such as Carr and Madan (1999) and Lewis (2000); v) an extensive pricing exercise under the rough Heston model of Jaisson and Rosenbaum (2015); vi) formulas to evaluate numerically the moments of a truncated density. The advantages of the SINC approach are numerous. When compared to benchmark methodologies, SINC provides the most accurate and fast pricing computation. The method naturally lends itself to price all options in a smile concurrently by means of Fast Fourier techniques, boosting fast calibration. Pricing requires to resort only to odd moments in the Fourier space. A previous version of this manuscript circulated with the title `Rough Heston: The SINC way.
In this paper we develop an algorithm to calculate the prices and Greeks of barrier options in a hyper-exponential additive model with piecewise constant parameters. We obtain an explicit semi-analytical expression for the first-passage probability.
Valuing Guaranteed Minimum Withdrawal Benefit (GMWB) has attracted significant attention from both the academic field and real world financial markets. As remarked by Yang and Dai, the Black and Scholes framework seems to be inappropriate for such a
A nonlinear wave alternative for the standard Black-Scholes option-pricing model is presented. The adaptive-wave model, representing controlled Brownian behavior of financial markets, is formally defined by adaptive nonlinear Schrodinger (NLS) equati
Adaptive wave model for financial option pricing is proposed, as a high-complexity alternative to the standard Black--Scholes model. The new option-pricing model, representing a controlled Brownian motion, includes two wave-type approaches: nonlinear
We consider option pricing using a discrete-time Markov switching stochastic volatility with co-jump model, which can model volatility clustering and varying mean-reversion speeds of volatility. For pricing European options, we develop a computationa