ترغب بنشر مسار تعليمي؟ اضغط هنا

The SINC way: A fast and accurate approach to Fourier pricing

73   0   0.0 ( 0 )
 نشر من قبل Giacomo Bormetti
 تاريخ النشر 2020
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

The goal of this paper is to investigate the method outlined by one of us (PR) in Cherubini et al. (2009) to compute option prices. We name it the SINC approach. While the COS method by Fang and Osterlee (2009) leverages the Fourier-cosine expansion of truncated densities, the SINC approach builds on the Shannon Sampling Theorem revisited for functions with bounded support. We provide several results which were missing in the early derivation: i) a rigorous proof of the convergence of the SINC formula to the correct option price when the support grows and the number of Fourier frequencies increases; ii) ready to implement formulas for put, Cash-or-Nothing, and Asset-or-Nothing options; iii) a systematic comparison with the COS formula for several log-price models; iv) a numerical challenge against alternative Fast Fourier specifications, such as Carr and Madan (1999) and Lewis (2000); v) an extensive pricing exercise under the rough Heston model of Jaisson and Rosenbaum (2015); vi) formulas to evaluate numerically the moments of a truncated density. The advantages of the SINC approach are numerous. When compared to benchmark methodologies, SINC provides the most accurate and fast pricing computation. The method naturally lends itself to price all options in a smile concurrently by means of Fast Fourier techniques, boosting fast calibration. Pricing requires to resort only to odd moments in the Fourier space. A previous version of this manuscript circulated with the title `Rough Heston: The SINC way.



قيم البحث

اقرأ أيضاً

In this paper we develop an algorithm to calculate the prices and Greeks of barrier options in a hyper-exponential additive model with piecewise constant parameters. We obtain an explicit semi-analytical expression for the first-passage probability. The solution rests on a randomization and an explicit matrix Wiener-Hopf factorization. Employing this result we derive explicit expressions for the Laplace-Fourier transforms of the prices and Greeks of barrier options. As a numerical illustration, the prices and Greeks of down-and-in digital and down-and-in call options are calculated for a set of parameters obtained by a simultaneous calibration to Stoxx50E call options across strikes and four different maturities. By comparing the results with Monte-Carlo simulations, we show that the method is fast, accurate, and stable.
Valuing Guaranteed Minimum Withdrawal Benefit (GMWB) has attracted significant attention from both the academic field and real world financial markets. As remarked by Yang and Dai, the Black and Scholes framework seems to be inappropriate for such a long maturity products. Also Chen Vetzal and Forsyth in showed that the price of these products is very sensitive to interest rate and volatility parameters. We propose here to use a stochastic volatility model (Heston model) and a Black Scholes model with stochastic interest rate (Hull White model). For this purpose we present four numerical methods for pricing GMWB variables annuities: a hybrid tree-finite difference method and a Hybrid Monte Carlo method, an ADI finite difference scheme, and a Standard Monte Carlo method. These methods are used to determine the no-arbitrage fee for the most popul
A nonlinear wave alternative for the standard Black-Scholes option-pricing model is presented. The adaptive-wave model, representing controlled Brownian behavior of financial markets, is formally defined by adaptive nonlinear Schrodinger (NLS) equati ons, defining the option-pricing wave function in terms of the stock price and time. The model includes two parameters: volatility (playing the role of dispersion frequency coefficient), which can be either fixed or stochastic, and adaptive market potential that depends on the interest rate. The wave function represents quantum probability amplitude, whose absolute square is probability density function. Four types of analytical solutions of the NLS equation are provided in terms of Jacobi elliptic functions, all starting from de Broglies plane-wave packet associated with the free quantum-mechanical particle. The best agreement with the Black-Scholes model shows the adaptive shock-wave NLS-solution, which can be efficiently combined with adaptive solitary-wave NLS-solution. Adjustable weights of the adaptive market-heat potential are estimated using either unsupervised Hebbian learning, or supervised Levenberg-Marquardt algorithm. In the case of stochastic volatility, it is itself represented by the wave function, so we come to the so-called Manakov system of two coupled NLS equations (that admits closed-form solutions), with the common adaptive market potential, which defines a bidirectional spatio-temporal associative memory. Keywords: Black-Scholes option pricing, adaptive nonlinear Schrodinger equation, market heat potential, controlled stochastic volatility, adaptive Manakov system, controlled Brownian behavior
Adaptive wave model for financial option pricing is proposed, as a high-complexity alternative to the standard Black--Scholes model. The new option-pricing model, representing a controlled Brownian motion, includes two wave-type approaches: nonlinear and quantum, both based on (adaptive form of) the Schrodinger equation. The nonlinear approach comes in two flavors: (i) for the case of constant volatility, it is defined by a single adaptive nonlinear Schrodinger (NLS) equation, while for the case of stochastic volatility, it is defined by an adaptive Manakov system of two coupled NLS equations. The linear quantum approach is defined in terms of de Broglies plane waves and free-particle Schrodinger equation. In this approach, financial variables have quantum-mechanical interpretation and satisfy the Heisenberg-type uncertainty relations. Both models are capable of successful fitting of the Black--Scholes data, as well as defining Greeks. Keywords: Black--Scholes option pricing, adaptive nonlinear Schrodinger equation, adaptive Manakov system, quantum-mechanical option pricing, market-heat potential PACS: 89.65.Gh, 05.45.Yv, 03.65.Ge
We consider option pricing using a discrete-time Markov switching stochastic volatility with co-jump model, which can model volatility clustering and varying mean-reversion speeds of volatility. For pricing European options, we develop a computationa lly efficient method for obtaining the probability distribution of average integrated variance (AIV), which is key to option pricing under stochastic-volatility-type models. Building upon the efficiency of the European option pricing approach, we are able to price an American-style option, by converting its pricing into the pricing of a portfolio of European options. Our work also provides constructive guidance for analyzing derivatives based on variance, e.g., the variance swap. Numerical results indicate our methods can be implemented very efficiently and accurately.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا