ﻻ يوجد ملخص باللغة العربية
A nonlinear wave alternative for the standard Black-Scholes option-pricing model is presented. The adaptive-wave model, representing controlled Brownian behavior of financial markets, is formally defined by adaptive nonlinear Schrodinger (NLS) equations, defining the option-pricing wave function in terms of the stock price and time. The model includes two parameters: volatility (playing the role of dispersion frequency coefficient), which can be either fixed or stochastic, and adaptive market potential that depends on the interest rate. The wave function represents quantum probability amplitude, whose absolute square is probability density function. Four types of analytical solutions of the NLS equation are provided in terms of Jacobi elliptic functions, all starting from de Broglies plane-wave packet associated with the free quantum-mechanical particle. The best agreement with the Black-Scholes model shows the adaptive shock-wave NLS-solution, which can be efficiently combined with adaptive solitary-wave NLS-solution. Adjustable weights of the adaptive market-heat potential are estimated using either unsupervised Hebbian learning, or supervised Levenberg-Marquardt algorithm. In the case of stochastic volatility, it is itself represented by the wave function, so we come to the so-called Manakov system of two coupled NLS equations (that admits closed-form solutions), with the common adaptive market potential, which defines a bidirectional spatio-temporal associative memory. Keywords: Black-Scholes option pricing, adaptive nonlinear Schrodinger equation, market heat potential, controlled stochastic volatility, adaptive Manakov system, controlled Brownian behavior
Adaptive wave model for financial option pricing is proposed, as a high-complexity alternative to the standard Black--Scholes model. The new option-pricing model, representing a controlled Brownian motion, includes two wave-type approaches: nonlinear
Valuing Guaranteed Minimum Withdrawal Benefit (GMWB) has attracted significant attention from both the academic field and real world financial markets. As remarked by Yang and Dai, the Black and Scholes framework seems to be inappropriate for such a
We consider option pricing using a discrete-time Markov switching stochastic volatility with co-jump model, which can model volatility clustering and varying mean-reversion speeds of volatility. For pricing European options, we develop a computationa
Trading option strangles is a highly popular strategy often used by market participants to mitigate volatility risks in their portfolios. In this paper we propose a measure of the relative value of a delta-Symmetric Strangle and compute it under the
Recently, a novel adaptive wave model for financial option pricing has been proposed in the form of adaptive nonlinear Schr{o}dinger (NLS) equation [Ivancevic a], as a high-complexity alternative to the linear Black-Scholes-Merton model [Black-Schole