ترغب بنشر مسار تعليمي؟ اضغط هنا

Option Pricing Under a Discrete-Time Markov Switching Stochastic Volatility with Co-Jump Model

260   0   0.0 ( 0 )
 نشر من قبل Michael Fu
 تاريخ النشر 2020
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider option pricing using a discrete-time Markov switching stochastic volatility with co-jump model, which can model volatility clustering and varying mean-reversion speeds of volatility. For pricing European options, we develop a computationally efficient method for obtaining the probability distribution of average integrated variance (AIV), which is key to option pricing under stochastic-volatility-type models. Building upon the efficiency of the European option pricing approach, we are able to price an American-style option, by converting its pricing into the pricing of a portfolio of European options. Our work also provides constructive guidance for analyzing derivatives based on variance, e.g., the variance swap. Numerical results indicate our methods can be implemented very efficiently and accurately.



قيم البحث

اقرأ أيضاً

In the classical model of stock prices which is assumed to be Geometric Brownian motion, the drift and the volatility of the prices are held constant. However, in reality, the volatility does vary. In quantitative finance, the Heston model has been s uccessfully used where the volatility is expressed as a stochastic differential equation. In addition, we consider a regime switching model where the stock volatility dynamics depends on an underlying process which is possibly a non-Markov pure jump process. Under this model assumption, we find the locally risk minimizing pricing of European type vanilla options. The price function is shown to satisfy a Heston type PDE.
We consider the problem of option pricing under stochastic volatility models, focusing on the linear approximation of the two processes known as exponential Ornstein-Uhlenbeck and Stein-Stein. Indeed, we show they admit the same limit dynamics in the regime of low fluctuations of the volatility process, under which we derive the exact expression of the characteristic function associated to the risk neutral probability density. This expression allows us to compute option prices exploiting a formula derived by Lewis and Lipton. We analyze in detail the case of Plain Vanilla calls, being liquid instruments for which reliable implied volatility surfaces are available. We also compute the analytical expressions of the first four cumulants, that are crucial to implement a simple two steps calibration procedure. It has been tested against a data set of options traded on the Milan Stock Exchange. The data analysis that we present reveals a good fit with the market implied surfaces and corroborates the accuracy of the linear approximation.
This paper presents the solution to a European option pricing problem by considering a regime-switching jump diffusion model of the underlying financial asset price dynamics. The regimes are assumed to be the results of an observed pure jump process, driving the values of interest rate and volatility coefficient. The pure jump process is assumed to be a semi-Markov process on finite state space. This consideration helps to incorporate a specific type of memory influence in the asset price. Under this model assumption, the locally risk minimizing price of the European type path-independent options is found. The F{o}llmer-Schweizer decomposition is adopted to show that the option price satisfies an evolution problem, as a function of time, stock price, market regime, and the stagnancy period. To be more precise, the evolution problem involves a linear, parabolic, degenerate and non-local system of integro-partial differential equations. We have established existence and uniqueness of classical solution to the evolution problem in an appropriate class.
Recent empirical studies suggest that the volatilities associated with financial time series exhibit short-range correlations. This entails that the volatility process is very rough and its autocorrelation exhibits sharp decay at the origin. Another classic stylistic feature often assumed for the volatility is that it is mean reverting. In this paper it is shown that the price impact of a rapidly mean reverting rough volatility model coincides with that associated with fast mean reverting Markov stochastic volatility models. This reconciles the empirical observation of rough volatility paths with the good fit of the implied volatility surface to models of fast mean reverting Markov volatilities. Moreover, the result conforms with recent numerical results regarding rough stochastic volatility models. It extends the scope of models for which the asymptotic results of fast mean reverting Markov volatilities are valid. The paper concludes with a general discussion of fractional volatility asymptotics and their interrelation. The regimes discussed there include fast and slow volatility factors with strong or small volatility fluctuations and with the limits not commuting in general. The notion of a characteristic term structure exponent is introduced, this exponent governs the implied volatility term structure in the various asymptotic regimes.
In this paper we solve the discrete time mean-variance hedging problem when asset returns follow a multivariate autoregressive hidden Markov model. Time dependent volatility and serial dependence are well established properties of financial time seri es and our model covers both. To illustrate the relevance of our proposed methodology, we first compare the proposed model with the well-known hidden Markov model via likelihood ratio tests and a novel goodness-of-fit test on the S&P 500 daily returns. Secondly, we present out-of-sample hedging results on S&P 500 vanilla options as well as a trading strategy based on theoretical prices, which we compare to simpler models including the classical Black-Scholes delta-hedging approach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا