ﻻ يوجد ملخص باللغة العربية
Single-phase multiferroic materials are usually considered useless because of the weak magnetoelectric effects, low operating temperature, and small electric polarization induced by magnetic orders. As a result, current studies on applications of the magnetoelectric effects are mainly focusing on multiferroic heterostructures and composites. Here we report a room-temperature giant effect in response to external magnetic fields in single-phase multiferroics. A low magnetic field of 1000 Oe applied on the spin-driven multiferroic hexaferrites BaSrCo2Fe11AlO22 and Ba0.9Sr1.1Co2Fe11AlO22 is able to cause a huge change in the linear magnetoelectric coefficient by several orders, leading to a giant magnetotranstance (GMT) effect at room temperature. The GMT effect is comparable to the well-known giant magnetoresistance (GMR) effect in magnetic multilayers, and thus opens up a door toward practical applications for single-phase multiferroics.
The structural phase transitions of MF$_3$ (M=Al, Cr, V, Fe, Ti, Sc) metal trifluorides are studied within a simple Landau theory consisting of tilts of rigid MF$_6$ octahedra associated with soft antiferrodistoritive optic modes that are coupled to
Weyl semimetals (WSM) have been extensively studied due to their exotic properties such as topological surface states and anomalous transport phenomena. Their band structure topology is usually predetermined by material parameters and can hardly be m
Materials with negative thermal expansion (NTE), which contract upon heating, are of great interest both technically and fundamentally. Here, we report giant NTE covering room temperature in mechanically milled antiperovksite GaNxMn3 compounds. The m
Thermal switching provides an effective way for active heat flow control, which has recently attracted increasing attention in terms of nanoscale thermal management technologies. In magnetic and spintronic materials, the thermal conductivity depends
Caloric responses (temperature changes) can be induced in solid-state materials by applying external stimuli such as stress, pressure, and electric and magnetic fields. The magnetic-field-stimulated response is called the magnetocaloric effect, and m