ﻻ يوجد ملخص باللغة العربية
The structural phase transitions of MF$_3$ (M=Al, Cr, V, Fe, Ti, Sc) metal trifluorides are studied within a simple Landau theory consisting of tilts of rigid MF$_6$ octahedra associated with soft antiferrodistoritive optic modes that are coupled to long-wavelength strain generating acoustic phonons. We calculate the temperature and pressure dependence of several quantities such as the spontaneous distortions, volume expansion and shear strains as well as $T-P$ phase diagrams. By contrasting our model to experiments we quantify the deviations from mean-field behavior and found that the tilt fluctuations of the MF$_6$ octahedra increase with metal cation size. We apply our model to predict giant barocaloric effects in Sc substituted TiF$_3$ of up to about $15,$JK$^{-1}$kg$^{-1}$ for modest hydrostatic compressions of $0.2,$GPa. The effect extends over a wide temperature range of over $140,$K (including room temperature) due to a large predicted rate $dT_c/dP = 723,$K GPa$^{-1}$, which exceeds those of typical barocaloric materials. Our results suggest that open lattice frameworks such as the trifluorides are an attractive platform to search for giant barocaloric effects.
Single-phase multiferroic materials are usually considered useless because of the weak magnetoelectric effects, low operating temperature, and small electric polarization induced by magnetic orders. As a result, current studies on applications of the
There is currently great interest in replacing the harmful volatile hydrofluorocarbon fluids used in refrigeration and air-conditioning with solid materials that display magnetocaloric, electrocaloric or mechanocaloric effects. However, the field-dri
Multiferroics permit the magnetic control of the electric polarization and electric control of the magnetization. These static magnetoelectric (ME) effects are of enormous interest: The ability to read and write a magnetic state current-free by an el
The advent of long-range magnetic order in non-centrosymmetric compounds has stimulated interest in the possibility of exotic spin transport phenomena and topologically protected spin textures for applications in next-generation spintronics. This wor
Antiferromagnetic spin motion at terahertz (THz) frequencies attracts growing interests for fast spintronics, however their smaller responses to external field inhibit device application. Recently the noncollinear antiferromagnet Mn$_3$Sn, a Weyl sem