ﻻ يوجد ملخص باللغة العربية
In two-dimensional heterostructures, crystalline atomic layers with differing lattice parameters can stack directly one on another. The resultant close proximity of atomic lattices with differing periodicity can lead to new phenomena. For umklapp processes, this opens the possibility for interlayer umklapp scattering, where interactions are mediated by the transfer of momenta to or from the lattice in the neighbouring layer. Using angle-resolved photoemission spectroscopy to study a graphene on InSe heterostructure, we present evidence that interlayer umklapp processes can cause hybridization between bands from neighbouring layers in regions of the Brillouin zone where bands from only one layer are expected, despite no evidence for moir/e-induced replica bands. This phenomenon manifests itself as ghost anti-crossings in the InSe electronic dispersion. Applied to a range of suitable 2DM pairs, this phenomenon of interlayer umklapp hybridization can be used to create strong mixing of their electronic states, giving a new tool for twist-controlled band structure engineering.
Umklapp processes play a fundamental role as the only intrinsic mechanism that allows electrons to transfer momentum to the crystal lattice and, therefore, provide a finite electrical resistance in pure metals. However, umklapp scattering has proven
Atomically thin layered two dimensional (2D) material has provided a rich library for both fundamental research and device applications. One of the special advantages is that, bandgap engineering and controlled material response can be achieved by st
Flat bands have band crossing points with other dispersive bands in many systems including the canonical flat band models in the Lieb and kagome lattices. Here we show that some of such band degeneracy points are unavoidable because of the symmetry r
The incommensurate 30$^{circ}$ twisted bilayer graphene possesses both relativistic Dirac fermions and quasiperiodicity with 12-fold rotational symmetry arising from the interlayer interaction [Ahn et al., Science textbf{361}, 782 (2018) and Yao et a
The use of relative twist angle between adjacent atomic layers in a van der Waals heterostructure, has emerged as a new degree of freedom to tune electronic and optoelectronic properties of devices based on 2D materials. Using ABA-stacked trilayer (T