ﻻ يوجد ملخص باللغة العربية
The use of relative twist angle between adjacent atomic layers in a van der Waals heterostructure, has emerged as a new degree of freedom to tune electronic and optoelectronic properties of devices based on 2D materials. Using ABA-stacked trilayer (TLG) graphene as the model system, we show that, contrary to conventional wisdom, the band structures of 2D materials are systematically tunable depending on their relative alignment angle between hexagonal BN (hBN), even at very large twist angles. Moreover, addition or removal of the hBN substrate results in an inversion of the K and K valley in TLGs lowest Landau level (LL). Our work illustrates the critical role played by substrates in van der Waals heterostructures and opens the door towards band structure modification and valley control via substrate and twist angle engineering.
In van der Waals (vdW) heterostructures formed by stacking two monolayers of transition metal dichalcogenides, multiple exciton resonances with highly tunable properties are formed and subject to both vertical and lateral confinement. We investigate
The observation of novel physical phenomena such as Hofstadters butterfly, topological currents and unconventional superconductivity in graphene have been enabled by the replacement of SiO$_2$ with hexagonal Boron Nitride (hBN) as a substrate and by
We investigate interlayer tunneling in heterostructures consisting of two tungsten diselenide (WSe2) monolayers with controlled rotational alignment, and separated by hexagonal boron nitride. In samples where the two WSe2 monolayers are rotationally
Inversion symmetry breaking allows contrasted circular dichroism in different k-space regions, which takes the extreme form of optical selection rules for interband transitions at high symmetry points. In materials where band-edges occur at noncentra
Large spin-orbital proximity effects have been predicted in graphene interfaced with a transition metal dichalcogenide layer. Whereas clear evidence for an enhanced spin-orbit coupling has been found at large carrier densities, the type of spin-orbit