ﻻ يوجد ملخص باللغة العربية
Atomically thin layered two dimensional (2D) material has provided a rich library for both fundamental research and device applications. One of the special advantages is that, bandgap engineering and controlled material response can be achieved by stacking different 2D materials. Recently several types of excitonic lasers have been reported based on Transition metal dichalcogenide (TMDC) monolayers, however, the emission is still the intrinsic energy bandgap of the monolayers and lasers harnessing the flexibility of Van der Waals heterostructures have not been demonstrated yet. Here, we report for the first time a room temperature interlayer exciton laser with MoS2/WSe2 heterostructures. The onset of lasing action was identified by a combination of distinct kink in the L-L curve and the noticeable collapse of spectral linewidth. Different from visible emission of intralayer excitons for both MoS2 and WSe2, our interlayer exciton laser works in the infrared range, which is fully compatible with the well-established technologies in silicon photonics. Thanks to the long lifetime of interlayer excitons, the requirement of the cavity quality factor is relaxed by orders of magnitude. The demonstration of room temperature interlayer exciton laser might open new perspectives for the development of coherent light source with tailored optical properties on silicon photonics platform.
Indirect excitons (IXs) in van der Waals transition-metal dichalcogenide (TMD) heterostructures are characterized by a high binding energy making them stable at room temperature and giving the opportunity for exploring fundamental phenomena in excito
For quantum technologies based on single excitons and spins, the deterministic placement and control of a single exciton is a long-standing goal. MoSe2-WSe2 heterostructures host spatially indirect interlayer excitons (IXs) which exhibit highly tunab
Throughout the years, strongly correlated coherent states of excitons have been the subject of intense theoretical and experimental studies. This topic has recently boomed due to new emerging quantum materials such as van der Waals (vdW) bound atomic
Two-dimensional (2D) materials, such as graphene1, boron nitride2, and transition metal dichalcogenides (TMDs)3-5, have sparked wide interest in both device physics and technological applications at the atomic monolayer limit. These 2D monolayers can
Based on emph{ab initio} theoretical calculations of the optical spectra of vertical heterostructures of MoSe$_2$ (or MoS$_2$) and WSe$_2$ sheets, we reveal two spin-orbit-split Rydberg series of excitonic states below the textsl{A} excitons of MoSe$