ﻻ يوجد ملخص باللغة العربية
This paper is concerned with the regularity theory of a transmission problem arising in composite materials. We give a new self-contained proof for the $C^{k,alpha}$ estimates on both sides of the interface under the minimal assumptions on the interface and data. Moreover, we prove the uniform Lipschitz estimate across a $C^{1,alpha}$ interface when the coefficients on both sides of the interface are periodic with independent structures and oscillating at different microscopic scales.
This paper is concerned with periodic homogenization of second-order elliptic systems in divergence form with oscillating Dirichlet data or Neumann data of first order. We prove that the homogenized boundary data belong to $W^{1, p}$ for any $1<p<inf
In this paper, the asymptotic behavior of the solutions of a monotone problem posed in a locally periodic oscillating domain is studied. Nonlinear monotone boundary conditions are imposed on the oscillating part of the boundary whereas the Dirichlet
The H^2-regularity of variational solutions to a two-dimensional transmission problem with geometric constraint is investigated, in particular when part of the interface becomes part of the outer boundary of the domain due to the saturation of the ge
The Navier-Stokes equation driven by heat conduction is studied. As a prototype we consider Rayleigh-Benard convection, in the Boussinesq approximation. Under a large aspect ratio assumption, which is the case in Rayleigh-Benard experiments with Pran
In this paper, we consider a family of second-order elliptic systems subject to a periodically oscillating Robin boundary condition. We establish the qualitative homogenization theorem on any Lipschitz domains satisfying a non-resonance condition. We