ﻻ يوجد ملخص باللغة العربية
In this paper, the asymptotic behavior of the solutions of a monotone problem posed in a locally periodic oscillating domain is studied. Nonlinear monotone boundary conditions are imposed on the oscillating part of the boundary whereas the Dirichlet condition is considered on the smooth separate part. Using the unfolding method, under natural hypothesis on the regularity of the domain, we prove the weak $L^2$-convergence of the zero-extended solutions of the nonlinear problem and their flows to the solutions of a limit distributional problem.
This paper is concerned with the regularity theory of a transmission problem arising in composite materials. We give a new self-contained proof for the $C^{k,alpha}$ estimates on both sides of the interface under the minimal assumptions on the interf
We derive optimal-order homogenization rates for random nonlinear elliptic PDEs with monotone nonlinearity in the uniformly elliptic case. More precisely, for a random monotone operator on $mathbb{R}^d$ with stationary law (i.e. spatially homogeneous
This paper is devoted to establishing the uniform estimates and asymptotic behaviors of the Greens functions $(G_varepsilon,Pi_varepsilon)$ (and fundamental solutions $(Gamma_varepsilon, Q_varepsilon)$) for the Stokes system with periodically oscilla
We prove explicit doubling inequalities and obtain uniform upper bounds (under $(d-1)$-dimensional Hausdorff measure) of nodal sets of weak solutions for a family of linear elliptic equations with rapidly oscillating periodic coefficients. The doubli
This paper is concerned with periodic homogenization of second-order elliptic systems in divergence form with oscillating Dirichlet data or Neumann data of first order. We prove that the homogenized boundary data belong to $W^{1, p}$ for any $1<p<inf