ﻻ يوجد ملخص باللغة العربية
The H^2-regularity of variational solutions to a two-dimensional transmission problem with geometric constraint is investigated, in particular when part of the interface becomes part of the outer boundary of the domain due to the saturation of the geometric constraint. In such a situation, the domain includes some non-Lipschitz subdomains with cusp points, but it is shown that this feature does not lead to a regularity breakdown. Moreover, continuous dependence of the solutions with respect to the domain is established.
This paper is concerned with the regularity theory of a transmission problem arising in composite materials. We give a new self-contained proof for the $C^{k,alpha}$ estimates on both sides of the interface under the minimal assumptions on the interf
We consider the transmission problem for the Laplace equation on an infinite three-dimensional wedge, determining the complex parameters for which the problem is well-posed, and characterizing the infinite multiplicity nature of the spectrum. This is
In this paper we are concerned with a two-penalty boundary obstacle problem of interest in thermics, fluid dynamics and electricity. Specifically, we prove existence, uniqueness and optimal regularity of the solutions, and we establish structural properties of the free boundary.
The two-dimensional Zakharov system is shown to have a unique global solution for data without finite energy if the L^2 - norm of the Schrodinger part is small enough. The proof uses a refined I-method originally initiated by Colliander, Keel, Staffi
We give a simple proof of a recent result in [1] by Caffarelli, Soria-Carro, and Stinga about the $C^{1,alpha}$ regularity of weak solutions to transmission problems with $C^{1,alpha}$ interfaces. Our proof does not use the mean value property or the