ترغب بنشر مسار تعليمي؟ اضغط هنا

Metamodel Based Forward and Inverse Design for Passive Vibration Suppression

72   0   0.0 ( 0 )
 نشر من قبل Souma Chowdhury
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Aperiodic metamaterials represent a class of structural systems that are composed of different building blocks (cells), instead of a self-repeating chain of the same unit cells. Optimizing aperiodic cellular structural systems thus presents high-dimensional problems that are challenging to solve using purely high-fidelity structural optimization approaches. Specialized analytical modeling along with metamodel based optimization can provide a more tractable alternative solution approach. To this end, this paper presents a design automation framework applied to a 1D metamaterial system, namely a drill string, where vibration suppression is of utmost importance. The drill string comprises a set of nonuniform rings attached to the outer surface of a longitudinal rod. As such, the resultant system can now be perceived as an aperiodic 1D metamaterial with each ring/gap representing a cell. Despite being a 1D system, the simultaneous consideration of multiple DoF (i.e., torsional, axial, and lateral motions) poses significant computational challenges. Therefore, a transfer matrix method (TMM) is employed to analytically determine the frequency response of the drill string. A suite of neural networks (ANN) is trained on TMM samples (which present minute-scale computing costs per evaluation), to model the frequency response. ANN-based optimization is then performed to minimize mass subject to constraints on the gap between consecutive resonance peaks in one case, and minimizing this gap in the second case, leading to crucial improvements over baselines. Further novel contribution occurs through the development of an inverse modeling approach that can instantaneously produce the 1D metamaterial design with minimum mass for a given desired non-resonant frequency range. This is accomplished by using invertible neural networks, and results show promising alignment with forward solutions.



قيم البحث

اقرأ أيضاً

We introduce a physics-guided signal processing approach to extract a damage-sensitive and domain-invariant (DS & DI) feature from acceleration response data of a vehicle traveling over a bridge to assess bridge health. Motivated by indirect sensing methods benefits, such as low-cost and low-maintenance, vehicle-vibration-based bridge health monitoring has been studied to efficiently monitor bridges in real-time. Yet applying this approach is challenging because 1) physics-based features extracted manually are generally not damage-sensitive, and 2) features from machine learning techniques are often not applicable to different bridges. Thus, we formulate a vehicle bridge interaction system model and find a physics-guided DS & DI feature, which can be extracted using the synchrosqueezed wavelet transform representing non-stationary signals as intrinsic-mode-type components. We validate the effectiveness of the proposed feature with simulated experiments. Compared to conventional time- and frequency-domain features, our feature provides the best damage quantification and localization results across different bridges in five of six experiments.
The discovery of new materials has been the essential force which brings a discontinuous improvement to industrial products performance. However, the extra-vast combinatorial design space of material structures exceeds human experts capability to exp lore all, thereby hampering material development. In this paper, we present a material industry-oriented web platform of an AI-driven molecular inverse-design system, which automatically designs brand new molecular structures rapidly and diversely. Different from existing inverse-design solutions, in this system, the combination of substructure-based feature encoding and molecular graph generation algorithms allows a user to gain high-speed, interpretable, and customizable design process. Also, a hierarchical data structure and user-oriented UI provide a flexible and intuitive workflow. The system is deployed on IBMs and our clients cloud servers and has been used by 5 partner companies. To illustrate actual industrial use cases, we exhibit inverse-design of sugar and dye molecules, that were carried out by experimental chemists in those client companies. Compared to general human chemists standard performance, the molecular design speed was accelerated more than 10 times, and greatly increased variety was observed in the inverse-designed molecules without loss of chemical realism.
Metamaterials are emerging as a new paradigmatic material system to render unprecedented and tailorable properties for a wide variety of engineering applications. However, the inverse design of metamaterial and its multiscale system is challenging du e to high-dimensional topological design space, multiple local optima, and high computational cost. To address these hurdles, we propose a novel data-driven metamaterial design framework based on deep generative modeling. A variational autoencoder (VAE) and a regressor for property prediction are simultaneously trained on a large metamaterial database to map complex microstructures into a low-dimensional, continuous, and organized latent space. We show in this study that the latent space of VAE provides a distance metric to measure shape similarity, enable interpolation between microstructures and encode meaningful patterns of variation in geometries and properties. Based on these insights, systematic data-driven methods are proposed for the design of microstructure, graded family, and multiscale system. For microstructure design, the tuning of mechanical properties and complex manipulations of microstructures are easily achieved by simple vector operations in the latent space. The vector operation is further extended to generate metamaterial families with a controlled gradation of mechanical properties by searching on a constructed graph model. For multiscale metamaterial systems design, a diverse set of microstructures can be rapidly generated using VAE for target properties at different locations and then assembled by an efficient graph-based optimization method to ensure compatibility between adjacent microstructures. We demonstrate our framework by designing both functionally graded and heterogeneous metamaterial systems that achieve desired distortion behaviors.
Designing novel materials that possess desired properties is a central need across many manufacturing industries. Driven by that industrial need, a variety of algorithms and tools have been developed that combine AI (machine learning and analytics) w ith domain knowledge in physics, chemistry, and materials science. AI-driven materials design can be divided to mainly two stages; the first one is the modeling stage, where the goal is to build an accurate regression or classification model to predict material properties (e.g. glass transition temperature) or attributes (e.g. toxic/non-toxic). The next stage is design, where the goal is to assemble or tune material structures so that they can achieve user-demanded target property values based on a prediction model that is trained in the modeling stage. For maximum benefit, these two stages should be architected to form a coherent workflow. Today there are several emerging services and tools for AI-driven material design, however, most of them provide only partial technical components (e.g. data analyzer, regression model, structure generator, etc.), that are useful for specific purposes, but for comprehensive material design, those components need to be orchestrated appropriately. Our material design system provides an end-to-end solution to this problem, with a workflow that consists of data input, feature encoding, prediction modeling, solution search, and structure generation. The system builds a regression model to predict properties, solves an inverse problem on the trained model, and generates novel chemical structure candidates that satisfy the target properties. In this paper we will introduce the methodology of our system, and demonstrate a simple example of inverse design generating new chemical structures that satisfy targeted physical property values.
Despite the great promise of the physics-informed neural networks (PINNs) in solving forward and inverse problems, several technical challenges are present as roadblocks for more complex and realistic applications. First, most existing PINNs are base d on point-wise formulation with fully-connected networks to learn continuous functions, which suffer from poor scalability and hard boundary enforcement. Second, the infinite search space over-complicates the non-convex optimization for network training. Third, although the convolutional neural network (CNN)-based discrete learning can significantly improve training efficiency, CNNs struggle to handle irregular geometries with unstructured meshes. To properly address these challenges, we present a novel discrete PINN framework based on graph convolutional network (GCN) and variational structure of PDE to solve forward and inverse partial differential equations (PDEs) in a unified manner. The use of a piecewise polynomial basis can reduce the dimension of search space and facilitate training and convergence. Without the need of tuning penalty parameters in classic PINNs, the proposed method can strictly impose boundary conditions and assimilate sparse data in both forward and inverse settings. The flexibility of GCNs is leveraged for irregular geometries with unstructured meshes. The effectiveness and merit of the proposed method are demonstrated over a variety of forward and inverse computational mechanics problems governed by both linear and nonlinear PDEs.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا