ﻻ يوجد ملخص باللغة العربية
We introduce a physics-guided signal processing approach to extract a damage-sensitive and domain-invariant (DS & DI) feature from acceleration response data of a vehicle traveling over a bridge to assess bridge health. Motivated by indirect sensing methods benefits, such as low-cost and low-maintenance, vehicle-vibration-based bridge health monitoring has been studied to efficiently monitor bridges in real-time. Yet applying this approach is challenging because 1) physics-based features extracted manually are generally not damage-sensitive, and 2) features from machine learning techniques are often not applicable to different bridges. Thus, we formulate a vehicle bridge interaction system model and find a physics-guided DS & DI feature, which can be extracted using the synchrosqueezed wavelet transform representing non-stationary signals as intrinsic-mode-type components. We validate the effectiveness of the proposed feature with simulated experiments. Compared to conventional time- and frequency-domain features, our feature provides the best damage quantification and localization results across different bridges in five of six experiments.
Aperiodic metamaterials represent a class of structural systems that are composed of different building blocks (cells), instead of a self-repeating chain of the same unit cells. Optimizing aperiodic cellular structural systems thus presents high-dime
$textbf{Objective}$: To develop a multi-channel device event segmentation and feature extraction algorithm that is robust to changes in data distribution. $textbf{Methods}$: We introduce an adaptive transfer learning algorithm to classify and segment
Frequency Response Functions (FRFs) are one of the cornerstones of musical acoustic experimental research. They describe the way in which musical instruments vibrate in a wide range of frequencies and are used to predict and understand the acoustic d
As autonomous systems begin to operate amongst humans, methods for safe interaction must be investigated. We consider an example of a small autonomous vehicle in a pedestrian zone that must safely maneuver around people in a free-form fashion. We inv
A new gradient-based formulation for predicting fracture in elastic-plastic solids is presented. Damage is captured by means of a phase field model that considers both the elastic and plastic works as driving forces for fracture. Material deformation