ترغب بنشر مسار تعليمي؟ اضغط هنا

Damage-sensitive and domain-invariant feature extraction for vehicle-vibration-based bridge health monitoring

344   0   0.0 ( 0 )
 نشر من قبل Jingxiao Liu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a physics-guided signal processing approach to extract a damage-sensitive and domain-invariant (DS & DI) feature from acceleration response data of a vehicle traveling over a bridge to assess bridge health. Motivated by indirect sensing methods benefits, such as low-cost and low-maintenance, vehicle-vibration-based bridge health monitoring has been studied to efficiently monitor bridges in real-time. Yet applying this approach is challenging because 1) physics-based features extracted manually are generally not damage-sensitive, and 2) features from machine learning techniques are often not applicable to different bridges. Thus, we formulate a vehicle bridge interaction system model and find a physics-guided DS & DI feature, which can be extracted using the synchrosqueezed wavelet transform representing non-stationary signals as intrinsic-mode-type components. We validate the effectiveness of the proposed feature with simulated experiments. Compared to conventional time- and frequency-domain features, our feature provides the best damage quantification and localization results across different bridges in five of six experiments.



قيم البحث

اقرأ أيضاً

Aperiodic metamaterials represent a class of structural systems that are composed of different building blocks (cells), instead of a self-repeating chain of the same unit cells. Optimizing aperiodic cellular structural systems thus presents high-dime nsional problems that are challenging to solve using purely high-fidelity structural optimization approaches. Specialized analytical modeling along with metamodel based optimization can provide a more tractable alternative solution approach. To this end, this paper presents a design automation framework applied to a 1D metamaterial system, namely a drill string, where vibration suppression is of utmost importance. The drill string comprises a set of nonuniform rings attached to the outer surface of a longitudinal rod. As such, the resultant system can now be perceived as an aperiodic 1D metamaterial with each ring/gap representing a cell. Despite being a 1D system, the simultaneous consideration of multiple DoF (i.e., torsional, axial, and lateral motions) poses significant computational challenges. Therefore, a transfer matrix method (TMM) is employed to analytically determine the frequency response of the drill string. A suite of neural networks (ANN) is trained on TMM samples (which present minute-scale computing costs per evaluation), to model the frequency response. ANN-based optimization is then performed to minimize mass subject to constraints on the gap between consecutive resonance peaks in one case, and minimizing this gap in the second case, leading to crucial improvements over baselines. Further novel contribution occurs through the development of an inverse modeling approach that can instantaneously produce the 1D metamaterial design with minimum mass for a given desired non-resonant frequency range. This is accomplished by using invertible neural networks, and results show promising alignment with forward solutions.
$textbf{Objective}$: To develop a multi-channel device event segmentation and feature extraction algorithm that is robust to changes in data distribution. $textbf{Methods}$: We introduce an adaptive transfer learning algorithm to classify and segment events from non-stationary multi-channel temporal data. Using a multivariate hidden Markov model (HMM) and Fishers linear discriminant analysis (FLDA) the algorithm adaptively adjusts to shifts in distribution over time. The proposed algorithm is unsupervised and learns to label events without requiring $textit{a priori}$ information about true event states. The procedure is illustrated on experimental data collected from a cohort in a human viral challenge (HVC) study, where certain subjects have disrupted wake and sleep patterns after exposure to a H1N1 influenza pathogen. $textbf{Results}$: Simulations establish that the proposed adaptive algorithm significantly outperforms other event classification methods. When applied to early time points in the HVC data the algorithm extracts sleep/wake features that are predictive of both infection and infection onset time. $textbf{Conclusion}$: The proposed transfer learning event segmentation method is robust to temporal shifts in data distribution and can be used to produce highly discriminative event-labeled features for health monitoring. $textbf{Significance}$: Our integrated multisensor signal processing and transfer learning method is applicable to many ambulatory monitoring applications.
Frequency Response Functions (FRFs) are one of the cornerstones of musical acoustic experimental research. They describe the way in which musical instruments vibrate in a wide range of frequencies and are used to predict and understand the acoustic d ifferences between them. In the specific case of stringed musical instruments such as violins, FRFs evaluated at the bridge are known to capture the overall body vibration. These indicators, also called bridge admittances, are widely used in the literature for comparative analyses. However, due to their complex structure they are rather difficult to quantitatively compare and study. In this manuscript we present a way to quantify differences between FRFs, in particular violin bridge admittances, that separates the effects in frequency, amplitude and quality factor of the first resonance peaks characterizing the responses. This approach allows us to define a distance between FRFs and clusterise measurements according to this distance. We use two case studies, one based on Finite Element Analysis and another exploiting measurements on real violins, to prove the effectiveness of such representation. In particular, for simulated bridge admittances the proposed distance is able to highlight the different impact of consecutive simulation `steps on specific vibrational properties and, for real violins, gives a first insight on similar styles of making, as well as opposite ones.
62 - Peter Du , Zhe Huang , Tianqi Liu 2019
As autonomous systems begin to operate amongst humans, methods for safe interaction must be investigated. We consider an example of a small autonomous vehicle in a pedestrian zone that must safely maneuver around people in a free-form fashion. We inv estigate two key questions: How can we effectively integrate pedestrian intent estimation into our autonomous stack. Can we develop an online monitoring framework to give formal guarantees on the safety of such human-robot interactions. We present a pedestrian intent estimation framework that can accurately predict future pedestrian trajectories given multiple possible goal locations. We integrate this into a reachability-based online monitoring scheme that formally assesses the safety of these interactions with nearly real-time performance (approximately 0.3 seconds). These techniques are integrated on a test vehicle with a complete in-house autonomous stack, demonstrating effective and safe interaction in real-world experiments.
A new gradient-based formulation for predicting fracture in elastic-plastic solids is presented. Damage is captured by means of a phase field model that considers both the elastic and plastic works as driving forces for fracture. Material deformation is characterised by a mechanism-based strain gradient constitutive model. This non-local plastic-damage formulation is numerically implemented and used to simulate fracture in several paradigmatic boundary value problems. The case studies aim at shedding light into the role of the plastic and fracture length scales. It is found that the role of plastic strain gradients is two-fold. When dealing with sharp defects like cracks, plastic strain gradients elevate local stresses and facilitate fracture. However, in the presence of non-sharp defects failure is driven by the localisation of plastic flow, which is delayed due to the additional work hardening introduced by plastic strain gradients.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا