ترغب بنشر مسار تعليمي؟ اضغط هنا

AI-driven Inverse Design System for Organic Molecules

101   0   0.0 ( 0 )
 نشر من قبل Seiji Takeda Dr
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Designing novel materials that possess desired properties is a central need across many manufacturing industries. Driven by that industrial need, a variety of algorithms and tools have been developed that combine AI (machine learning and analytics) with domain knowledge in physics, chemistry, and materials science. AI-driven materials design can be divided to mainly two stages; the first one is the modeling stage, where the goal is to build an accurate regression or classification model to predict material properties (e.g. glass transition temperature) or attributes (e.g. toxic/non-toxic). The next stage is design, where the goal is to assemble or tune material structures so that they can achieve user-demanded target property values based on a prediction model that is trained in the modeling stage. For maximum benefit, these two stages should be architected to form a coherent workflow. Today there are several emerging services and tools for AI-driven material design, however, most of them provide only partial technical components (e.g. data analyzer, regression model, structure generator, etc.), that are useful for specific purposes, but for comprehensive material design, those components need to be orchestrated appropriately. Our material design system provides an end-to-end solution to this problem, with a workflow that consists of data input, feature encoding, prediction modeling, solution search, and structure generation. The system builds a regression model to predict properties, solves an inverse problem on the trained model, and generates novel chemical structure candidates that satisfy the target properties. In this paper we will introduce the methodology of our system, and demonstrate a simple example of inverse design generating new chemical structures that satisfy targeted physical property values.



قيم البحث

اقرأ أيضاً

The discovery of new materials has been the essential force which brings a discontinuous improvement to industrial products performance. However, the extra-vast combinatorial design space of material structures exceeds human experts capability to exp lore all, thereby hampering material development. In this paper, we present a material industry-oriented web platform of an AI-driven molecular inverse-design system, which automatically designs brand new molecular structures rapidly and diversely. Different from existing inverse-design solutions, in this system, the combination of substructure-based feature encoding and molecular graph generation algorithms allows a user to gain high-speed, interpretable, and customizable design process. Also, a hierarchical data structure and user-oriented UI provide a flexible and intuitive workflow. The system is deployed on IBMs and our clients cloud servers and has been used by 5 partner companies. To illustrate actual industrial use cases, we exhibit inverse-design of sugar and dye molecules, that were carried out by experimental chemists in those client companies. Compared to general human chemists standard performance, the molecular design speed was accelerated more than 10 times, and greatly increased variety was observed in the inverse-designed molecules without loss of chemical realism.
An Intelligent Tutoring System (ITS) has been shown to improve students learning outcomes by providing a personalized curriculum that addresses individual needs of every student. However, despite the effectiveness and efficiency that ITS brings to st udents learning process, most of the studies in ITS research have conducted less effort to design the interface of ITS that promotes students interest in learning, motivation and engagement by making better use of AI features. In this paper, we explore AI-driven design for the interface of ITS describing diagnostic feedback for students problem-solving process and investigate its impacts on their engagement. We propose several interface designs powered by different AI components and empirically evaluate their impacts on student engagement through Santa, an active mobile ITS. Controlled A/B tests conducted on more than 20K students in the wild show that AI-driven interface design improves the factors of engagement by up to 25.13%.
Aperiodic metamaterials represent a class of structural systems that are composed of different building blocks (cells), instead of a self-repeating chain of the same unit cells. Optimizing aperiodic cellular structural systems thus presents high-dime nsional problems that are challenging to solve using purely high-fidelity structural optimization approaches. Specialized analytical modeling along with metamodel based optimization can provide a more tractable alternative solution approach. To this end, this paper presents a design automation framework applied to a 1D metamaterial system, namely a drill string, where vibration suppression is of utmost importance. The drill string comprises a set of nonuniform rings attached to the outer surface of a longitudinal rod. As such, the resultant system can now be perceived as an aperiodic 1D metamaterial with each ring/gap representing a cell. Despite being a 1D system, the simultaneous consideration of multiple DoF (i.e., torsional, axial, and lateral motions) poses significant computational challenges. Therefore, a transfer matrix method (TMM) is employed to analytically determine the frequency response of the drill string. A suite of neural networks (ANN) is trained on TMM samples (which present minute-scale computing costs per evaluation), to model the frequency response. ANN-based optimization is then performed to minimize mass subject to constraints on the gap between consecutive resonance peaks in one case, and minimizing this gap in the second case, leading to crucial improvements over baselines. Further novel contribution occurs through the development of an inverse modeling approach that can instantaneously produce the 1D metamaterial design with minimum mass for a given desired non-resonant frequency range. This is accomplished by using invertible neural networks, and results show promising alignment with forward solutions.
There exists a broad class of sequencing problems, for example, in proteins and polymers that can be formulated as a heuristic search algorithm that involve decision making akin to a computer game. AI gaming algorithms such as Monte Carlo tree search (MCTS) gained prominence after their exemplary performance in the computer Go game and are decision trees aimed at identifying the path (moves) that should be taken by the policy to reach the final winning or optimal solution. Major challenges in inverse sequencing problems are that the materials search space is extremely vast and property evaluation for each sequence is computationally demanding. Reaching an optimal solution by minimizing the total number of evaluations in a given design cycle is therefore highly desirable. We demonstrate that one can adopt this approach for solving the sequencing problem by developing and growing a decision tree, where each node in the tree is a candidate sequence whose fitness is directly evaluated by molecular simulations. We interface MCTS with MD simulations and use a representative example of designing a copolymer compatibilizer, where the goal is to identify sequence specific copolymers that lead to zero interfacial energy between two immiscible homopolymers. We apply the MCTS algorithm to polymer chain lengths varying from 10-mer to 30-mer, wherein the overall search space varies from 210 (1024) to 230 (~1 billion). In each case, we identify a target sequence that leads to zero interfacial energy within a few hundred evaluations demonstrating the scalability and efficiency of MCTS in exploring practical materials design problems with exceedingly vast chemical/material search space. Our MCTS-MD framework can be easily extended to several other polymer and protein inverse design problems, in particular, for cases where sequence-property data is either unavailable and/or is resource intensive.
Data-driven design of mechanical metamaterials is an increasingly popular method to combat costly physical simulations and immense, often intractable, geometrical design spaces. Using a precomputed dataset of unit cells, a multiscale structure can be quickly filled via combinatorial search algorithms, and machine learning models can be trained to accelerate the process. However, the dependence on data induces a unique challenge: An imbalanced dataset containing more of certain shapes or physical properties can be detrimental to the efficacy of data-driven approaches. In answer, we posit that a smaller yet diverse set of unit cells leads to scalable search and unbiased learning. To select such subsets, we propose METASET, a methodology that 1) uses similarity metrics and positive semi-definite kernels to jointly measure the closeness of unit cells in both shape and property spaces, and 2) incorporates Determinantal Point Processes for efficient subset selection. Moreover, METASET allows the trade-off between shape and property diversity so that subsets can be tuned for various applications. Through the design of 2D metamaterials with target displacement profiles, we demonstrate that smaller, diverse subsets can indeed improve the search process as well as structural performance. By eliminating inherent overlaps in a dataset of 3D unit cells created with symmetry rules, we also illustrate that our flexible method can distill unique subsets regardless of the metric employed. Our diverse subsets are provided publicly for use by any designer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا