ﻻ يوجد ملخص باللغة العربية
We investigate gravitational microlensing signals produced by a spatially extended object transiting in front of a finite-sized source star. The most interesting features arise for lens and source sizes comparable to the Einstein radius of the setup. Using this information, we obtain constraints from the Subaru-HSC survey of M31 on the dark matter populations of NFW subhalos and boson stars of asteroid to Earth masses. These lens profiles capture the qualitative behavior of a wide range of dark matter substructures. We find that deviations from constraints on point-like lenses (e.g. primordial black holes and MACHOs) become visible for lenses of radius 0.1 $R_odot$ and larger, with the upper bound on lens masses weakening with increasing lens size.
Dark matter may be in the form of non-baryonic structures such as compact subhalos and boson stars. Structures weighing between asteroid and solar masses may be discovered via gravitational microlensing, an astronomical probe that has in the past hel
High-resolution N-body simulations of dark matter halos indicate that the Milky Way contains numerous subhalos. When a dark matter subhalo passes in front of a star, the light from that star will be deflected by gravitational lensing, leading to a sm
Recently it has been claimed that the warm dark matter (WDM) model cannot at the same time reproduce the observed Lyman-{alpha} forests in distant quasar spectra and solve the small-scale issues in the cold dark matter (CDM) model. As an alternative
If the Dark Matter consists of primordial black holes (PBHs), we show that gravitational lensing of stars being monitored by NASAs Kepler search for extra-solar planets can cause significant numbers of detectable microlensing events. A search through
We present a joint estimate of the stellar/dark matter mass fraction in lens galaxies and the average size of the accretion disk of lensed quasars from microlensing measurements of 27 quasar image pairs seen through 19 lens galaxies. The Bayesian est