ﻻ يوجد ملخص باللغة العربية
Recently it has been claimed that the warm dark matter (WDM) model cannot at the same time reproduce the observed Lyman-{alpha} forests in distant quasar spectra and solve the small-scale issues in the cold dark matter (CDM) model. As an alternative candidate, it was shown that the mixed dark matter (MDM) model that consists of WDM and CDM can satisfy the constraint from Lyman-{alpha} forests and account for the missing satellite problem as well as the reported 3.5 keV anomalous X-ray line. We investigate observational constraints on the MDM model using strong gravitational lenses. We first develop a fitting formula for the nonlinear power spectra in the MDM model by performing N-body simulations and estimate the expected perturbations caused by line-of-sight structures in four quadruply lensed quasars that show anomaly in the flux ratios. Our analysis indicates that the MDM model is compatible with the observed anomaly if the mass fraction of the warm component is smaller than 0.47 at the 95% confidence level. The MDM explanation to the anomalous X-ray line and the small-scale issues is still viable even after this constraint is taken into account.
We investigate anomalous strong lens systems, particularly the effects of weak lensing by structures in the line of sight, in models with long-lived electrically charged massive particles (CHAMPs). In such models, matter density perturbations are sup
It has been suggested that dark matter particles which scatter inelastically from detector target nuclei could explain the apparent incompatibility of the DAMA modulation signal (interpreted as evidence for particle dark matter) with the null results
Dark matter interactions with electrons or protons during the early Universe leave imprints on the cosmic microwave background and the matter power spectrum, and can be probed through cosmological and astrophysical observations. We explore these inte
We revise the cosmological phenomenology of Macroscopic Dark Matter (MDM) candidates, also commonly dubbed as Macros. A possible signature of MDM is the capture of baryons from the cosmological plasma in the pre-recombination epoch, with the conseque
The increasingly significant tensions within $Lambda$CDM, combined with the lack of detection of dark matter (DM) in laboratory experiments, have boosted interest in non-minimal dark sectors, which are theoretically well-motivated and inspire new sea