ﻻ يوجد ملخص باللغة العربية
High-resolution N-body simulations of dark matter halos indicate that the Milky Way contains numerous subhalos. When a dark matter subhalo passes in front of a star, the light from that star will be deflected by gravitational lensing, leading to a small change in the stars apparent position. This astrometric microlensing signal depends on the inner density profile of the subhalo and can be greater than a few microarcseconds for an intermediate-mass subhalo (Mvir > 10000 solar masses) passing within arcseconds of a star. Current and near-future instruments could detect this signal, and we evaluate SIMs, Gaias, and ground-based telescopes potential as subhalo detectors. We develop a general formalism to calculate a subhalos astrometric lensing cross section over a wide range of masses and density profiles, and we calculate the lensing event rate by extrapolating the subhalo mass function predicted by simulations down to the subhalo masses potentially detectable with this technique. We find that, although the detectable event rates are predicted to be low on the basis of current simulations, lensing events may be observed if the central regions of dark matter subhalos are more dense than current models predict (>1 solar mass within 0.1 pc of the subhalo center). Furthermore, targeted astrometric observations can be used to confirm the presence of a nearby subhalo detected by gamma-ray emission. We show that, for sufficiently steep density profiles, ground-based adaptive optics astrometric techniques could be capable of detecting intermediate-mass subhalos at distances of hundreds of parsecs, while SIM could detect smaller and more distant subhalos.
The fact that dark matter (DM), thus far, has revealed itself only on scales of galaxies and larger, again thrusts onto astrophysics the opportunity and the responsibility to confront the age old mystery What is the nature of matter? By deriving basi
We investigate the possibility of applying machine learning techniques to images of strongly lensed galaxies to detect a low mass cut-off in the spectrum of dark matter sub-halos within the lens system. We generate lensed images of systems containing
We study the application of machine learning techniques for the detection of the astrometric signature of dark matter substructure. In this proof of principle a population of dark matter subhalos in the Milky Way will act as lenses for sources of ext
Dark matter may be in the form of non-baryonic structures such as compact subhalos and boson stars. Structures weighing between asteroid and solar masses may be discovered via gravitational microlensing, an astronomical probe that has in the past hel
We describe the methodology to include nonlinear evolution, including tidal effects, in the computation of subhalo distribution properties in both cold (CDM) and warm (WDM) dark matter universes. Using semi-analytic modeling, we include effects from