ﻻ يوجد ملخص باللغة العربية
The Euler characteristic $chi =|V|-|E|$ and the total length $mathcal{L}$ are the most important topological and geometrical characteristics of a metric graph. Here, $|V|$ and $|E|$ denote the number of vertices and edges of a graph. The Euler characteristic determines the number $beta$ of independent cycles in a graph while the total length determines the asymptotic behavior of the energy eigenvalues via the Weyls law. We show theoretically and confirm experimentally that the Euler characteristic can be determined (heard) from a finite sequence of the lowest eigenenergies $lambda_1, ldots, lambda_N$ of a simple quantum graph, without any need to inspect the system visually. In the experiment quantum graphs are simulated by microwave networks. We demonstrate that the sequence of the lowest resonances of microwave networks with $beta leq 3$ can be directly used in determining whether a network is planar, i.e., can be embedded in the plane. Moreover, we show that the measured Euler characteristic $chi$ can be used as a sensitive revealer of the fully connected graphs.
We evaluate the variance of coefficients of the characteristic polynomial for binary quantum graphs using a dynamical approach. This is the first example of a chaotic quantum system where a spectral statistic can be evaluated in terms of periodic orb
By using the Hamilton-Jacobi [HJ] framework the topological theories associated with Euler and Pontryagin classes are analyzed. We report the construction of a fundamental $HJ$ differential where the characteristic equations and the symmetries of the
We compute Haar ensemble averages of ratios of random characteristic polynomials for the classical Lie groups K = O(N), SO(N), and USp(N). To that end, we start from the Clifford-Weyl algebera in its canonical realization on the complex of holomorphi
We show that the averaged characteristic polynomial and the averaged inverse characteristic polynomial, associated with Hermitian matrices whose elements perform a random walk in the space of complex numbers, satisfy certain partial differential, dif
This paper contains a rigorous mathematical example of direct derivation of the system of Euler hydrodynamic equations from Hamiltonian equations for N point particle system as N tends to infinity. Direct means that the following standard tools are n