ﻻ يوجد ملخص باللغة العربية
This paper contains a rigorous mathematical example of direct derivation of the system of Euler hydrodynamic equations from Hamiltonian equations for N point particle system as N tends to infinity. Direct means that the following standard tools are not used in the proof: stochastic dynamics, thermodynamics, Boltzmann kinetic equations, correlation functions approach by N. N. Bogolyubov.
We discuss a basis set developed to calculate perturbation coefficients in an expansion of the general N-body problem. This basis has two advantages. First, the basis is complete order-by-order for the perturbation series. Second, the number of indep
By using the Hamilton-Jacobi [HJ] framework the topological theories associated with Euler and Pontryagin classes are analyzed. We report the construction of a fundamental $HJ$ differential where the characteristic equations and the symmetries of the
We construct explicit bound state wave functions and bound state energies for certain $N$--body Hamiltonians in one dimension that are analogous to $N$--electron Hamiltonians for (three-dimensional) atoms and monatomic ions.
In this work we study the tau-function $Z^{1D}$ of the KP hierarchy specified by the topological 1D gravity. As an application, we present two types of algorithms to compute the orbifold Euler characteristics of $overline{mathcal M}_{g,n}$. The first
In a particle physics dynamics, we assume a uniform distribution as the physical measure and a measure-theoretic definition of entropy on the velocity configuration space. This distribution is labeled as the physical solution in the remainder of the