ﻻ يوجد ملخص باللغة العربية
We evaluate the variance of coefficients of the characteristic polynomial for binary quantum graphs using a dynamical approach. This is the first example of a chaotic quantum system where a spectral statistic can be evaluated in terms of periodic orbits without taking the semiclassical limit, which is the limit of large graphs. The variance depends on the size of two classes of primitive pseudo orbits (sets of periodic orbits); pseudo orbits without self-intersections and those where all the self-intersections are 2-encounters at a single vertex. To show other pseudo orbits do not contribute we employ a parity argument for Lyndon word decompositions. For families of binary graphs with an increasing number of bonds, we show the periodic orbit formula approaches a universal constant independent of the coefficient of the polynomial. This constant is obtained by counting the total number of primitive pseudo orbits of a given length. To count periodic orbits and pseudo orbits we exploit further connections between orbits on binary graphs and Lyndon words.
The Euler characteristic $chi =|V|-|E|$ and the total length $mathcal{L}$ are the most important topological and geometrical characteristics of a metric graph. Here, $|V|$ and $|E|$ denote the number of vertices and edges of a graph. The Euler char
We show that the averaged characteristic polynomial and the averaged inverse characteristic polynomial, associated with Hermitian matrices whose elements perform a random walk in the space of complex numbers, satisfy certain partial differential, dif
Linearity of a dynamical entropy means that the dynamical entropy of the n-fold composition of a dynamical map with itself is equal to n times the dynamical entropy of the map for every positive integer n. We show that the quantum dynamical entropy i
The Hamiltonian action of a Lie group on a symplectic manifold induces a momentum map generalizing Noethers conserved quantity occurring in the case of a symmetry group. Then, when a Hamiltonian function can be written in terms of this momentum map,
We introduce a new model for investigating spectral properties of quantum graphs, a quantum circulant graph. Circulant graphs are the Cayley graphs of cyclic groups. Quantum circulant graphs with standard vertex conditions maintain important features