ﻻ يوجد ملخص باللغة العربية
We prove that Ising models on the hypercube with general quadratic interactions satisfy a Poincar{e} inequality with respect to the natural Dirichlet form corresponding to Glauber dynamics, as soon as the operator norm of the interaction matrix is smaller than $1$. The inequality implies a control on the mixing time of the Glauber dynamics. Our techniques rely on a localization procedure which establishes a structural result, stating that Ising measures may be decomposed into a mixture of measures with quadratic potentials of rank one, and provides a framework for proving concentration bounds for high temperature Ising models.
We investigate the bottom of the spectra of infinite quantum graphs, i.e., Laplace operators on metric graphs having infinitely many edges and vertices. We introduce a new definition of the isoperimetric constant for quantum graphs and then prove the
We study ferromagnetic Ising models on finite graphs with an inhomogeneous external field, where a subset of vertices is designated as the boundary. We show that the influence of boundary conditions on any given spin is maximised when the external fi
Applying quantitative perturbation theory for linear operators, we prove non-asymptotic limit theorems for Markov chains whose transition kernel has a spectral gap in an arbitrary Banach algebra of functions X . The main results are concentration ine
In this paper, we present a new way to associate a finitely summable spectral triple to a higher-rank graph $Lambda$, via the infinite path space $Lambda^infty$ of $Lambda$. Moreover, we prove that this spectral triple has a close connection to the w
It has been shown recently that spectral flow admits a natural integer-valued extension to essential spectrum. This extension admits four different interpretations; two of them are singular spectral shift function and total resonance index. In this w