ﻻ يوجد ملخص باللغة العربية
We investigate the bottom of the spectra of infinite quantum graphs, i.e., Laplace operators on metric graphs having infinitely many edges and vertices. We introduce a new definition of the isoperimetric constant for quantum graphs and then prove the Cheeger-type estimate. Our definition of the isoperimetric constant is purely combinatorial and thus it establishes connections with the combinatorial isoperimetric constant, one of the central objects in spectral graph theory and in the theory of simple random walks on graphs. The latter enables us to prove a number of criteria for quantum graphs to be uniformly positive or to have purely discrete spectrum. We demonstrate our findings by considering trees, antitrees and Cayley graphs of finitely generated groups.
We investigate self-adjoint extensions of the minimal Kirchhoff Laplacian on an infinite metric graph. More specifically, the main focus is on the relationship between graph ends and the space of self-adjoint extensions of the corresponding minimal K
We consider the Dirichlet Laplace operator on open, quasi-bounded domains of infinite volume. For such domains semiclassical spectral estimates based on the phase-space volume - and therefore on the volume of the domain - must fail. Here we present a
Let $Gamma$ be an arbitrary $mathbb{Z}^n$-periodic metric graph, which does not coincide with a line. We consider the Hamiltonian $mathcal{H}_varepsilon$ on $Gamma$ with the action $-varepsilon^{-1}{mathrm{d}^2/mathrm{d} x^2}$ on its edges; here $var
Smoothing (and decay) spacetime estimates are discussed for evolution groups of self-adjoint operators in an abstract setting. The basic assumption is the existence (and weak continuity) of the spectral density in a functional setting. Spectral ident
We study the spectrum of the Dirichlet Laplacian on an unbounded twisted tube with twisting velocity exploding to infinity. If the tube cross section does not intersect the axis of rotation, then its spectrum is purely discrete under some additional